Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 17420 by sushmitak last updated on 05/Jul/17

tan^6 (π/9)−33tan^4 (π/9)+27tan^2 (π/9)=?

tan6π933tan4π9+27tan2π9=?

Answered by Tinkutara last updated on 05/Jul/17

tan 3((π/9)) = (√3)  (√3) = ((3 tan (π/9) − tan^3  (π/9))/(1 − 3 tan^2  (π/9)))  3(1 + 9 tan^4  (π/9) − 6 tan^2  (π/9)) =  tan^2  (π/9) (9 + tan^4  (π/9) − 6 tan^2  (π/9))  On rearranging, we get  tan^6  (π/9) − 33 tan^4  (π/9) + 27 tan^2  (π/9) = 3

tan3(π9)=33=3tanπ9tan3π913tan2π93(1+9tan4π96tan2π9)=tan2π9(9+tan4π96tan2π9)Onrearranging,wegettan6π933tan4π9+27tan2π9=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com