Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 174220 by Mastermind last updated on 27/Jul/22

Commented by MJS_new last updated on 27/Jul/22

−21

$$−\mathrm{21} \\ $$

Commented by Mastermind last updated on 27/Jul/22

Show workings!

$$\mathrm{Show}\:\mathrm{workings}! \\ $$$$ \\ $$

Commented by MJS_new last updated on 27/Jul/22

use formula

$$\mathrm{use}\:\mathrm{formula} \\ $$

Commented by Mastermind last updated on 27/Jul/22

If you want to help, help!  If we can do it, i won′t posted it here

$$\mathrm{If}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to}\:\mathrm{help},\:\mathrm{help}! \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{can}\:\mathrm{do}\:\mathrm{it},\:\mathrm{i}\:\mathrm{won}'\mathrm{t}\:\mathrm{posted}\:\mathrm{it}\:\mathrm{here} \\ $$

Commented by MJS_new last updated on 27/Jul/22

det  [(M) ]= determinant ((M))   determinant ((a,b),(c,d))=ad−bc     determinant ((a,b,c),(d,e,f),(g,h,i))=aei+bfg+cdh−(afh+bdi+ceg)=       =a(ei−fh)−b(di−fg)+c(dh−eg)=       =a determinant ((e,f),(h,i))−b determinant ((d,f),(g,i))+c determinant ((d,e),(g,h))    same principle here:   determinant ((a,b,c,d),(e,f,g,h),(i,j,k,l),(m,n,o,p))=a determinant ((f,g,h),(j,k,l),(n,o,p))−b determinant ((e,g,h),(i,k,l),(m,o,p))+c determinant ((e,f,h),(i,j,l),(m,n,p))−d determinant ((e,f,g),(i,j,k),(m,n,o))

$$\mathrm{det}\:\begin{bmatrix}{{M}}\end{bmatrix}=\begin{vmatrix}{{M}}\end{vmatrix} \\ $$$$\begin{vmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{vmatrix}={ad}−{bc} \\ $$$$ \\ $$$$\begin{vmatrix}{{a}}&{{b}}&{{c}}\\{{d}}&{{e}}&{{f}}\\{{g}}&{{h}}&{{i}}\end{vmatrix}={aei}+{bfg}+{cdh}−\left({afh}+{bdi}+{ceg}\right)= \\ $$$$\:\:\:\:\:={a}\left({ei}−{fh}\right)−{b}\left({di}−{fg}\right)+{c}\left({dh}−{eg}\right)= \\ $$$$\:\:\:\:\:={a}\begin{vmatrix}{{e}}&{{f}}\\{{h}}&{{i}}\end{vmatrix}−{b}\begin{vmatrix}{{d}}&{{f}}\\{{g}}&{{i}}\end{vmatrix}+{c}\begin{vmatrix}{{d}}&{{e}}\\{{g}}&{{h}}\end{vmatrix} \\ $$$$ \\ $$$$\mathrm{same}\:\mathrm{principle}\:\mathrm{here}: \\ $$$$\begin{vmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{e}}&{{f}}&{{g}}&{{h}}\\{{i}}&{{j}}&{{k}}&{{l}}\\{{m}}&{{n}}&{{o}}&{{p}}\end{vmatrix}={a}\begin{vmatrix}{{f}}&{{g}}&{{h}}\\{{j}}&{{k}}&{{l}}\\{{n}}&{{o}}&{{p}}\end{vmatrix}−{b}\begin{vmatrix}{{e}}&{{g}}&{{h}}\\{{i}}&{{k}}&{{l}}\\{{m}}&{{o}}&{{p}}\end{vmatrix}+{c}\begin{vmatrix}{{e}}&{{f}}&{{h}}\\{{i}}&{{j}}&{{l}}\\{{m}}&{{n}}&{{p}}\end{vmatrix}−{d}\begin{vmatrix}{{e}}&{{f}}&{{g}}\\{{i}}&{{j}}&{{k}}\\{{m}}&{{n}}&{{o}}\end{vmatrix} \\ $$

Commented by Mastermind last updated on 27/Jul/22

Thanks man

$$\mathrm{Thanks}\:\mathrm{man} \\ $$

Commented by MJS_new last updated on 28/Jul/22

you′re welcome. this principle works for any  matrix size n×n

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{this}\:\mathrm{principle}\:\mathrm{works}\:\mathrm{for}\:\mathrm{any} \\ $$$$\mathrm{matrix}\:\mathrm{size}\:{n}×{n} \\ $$

Answered by Rasheed.Sindhi last updated on 27/Jul/22

Using Properties   determinant ((2,1,(-2),(  3)),(3,2,(-1),(  2)),(3,3,(  2),(-3)),(0,4,(  3),(  1)))    determinant (((-1),(-1),(  -1),(  1)),(3,2,(-1),(  2)),(3,3,(  2),(-3)),(0,4,(  3),(  1))) R1−R2   determinant ((0,0,(  0),(  1)),(5,4,(  1),(  2)),(0,0,(  -1),(-3)),(1,5,(  4),(  1)))C1+C4_(C2+C4_(C3+C4) )   −(1) determinant ((5,4,(    1)),(0,0,(  -1)),(1,5,(    4)))   −1(−(−1) ) determinant ((5,4,(-3)),(0,0,(  1)),(1,5,(  2)))    =− determinant ((5,4),(1,5))    −(5×5−4×1)=−21

$$\mathrm{Using}\:\mathrm{Properties} \\ $$$$\begin{vmatrix}{\mathrm{2}}&{\mathrm{1}}&{-\mathrm{2}}&{\:\:\mathrm{3}}\\{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{1}}&{\:\:\mathrm{2}}\\{\mathrm{3}}&{\mathrm{3}}&{\:\:\mathrm{2}}&{-\mathrm{3}}\\{\mathrm{0}}&{\mathrm{4}}&{\:\:\mathrm{3}}&{\:\:\mathrm{1}}\end{vmatrix}\: \\ $$$$\begin{vmatrix}{-\mathrm{1}}&{-\mathrm{1}}&{\:\:-\mathrm{1}}&{\:\:\mathrm{1}}\\{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{1}}&{\:\:\mathrm{2}}\\{\mathrm{3}}&{\mathrm{3}}&{\:\:\mathrm{2}}&{-\mathrm{3}}\\{\mathrm{0}}&{\mathrm{4}}&{\:\:\mathrm{3}}&{\:\:\mathrm{1}}\end{vmatrix}\:\mathrm{R1}−\mathrm{R2} \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{0}}&{\:\:\mathrm{1}}\\{\mathrm{5}}&{\mathrm{4}}&{\:\:\mathrm{1}}&{\:\:\mathrm{2}}\\{\mathrm{0}}&{\mathrm{0}}&{\:\:-\mathrm{1}}&{-\mathrm{3}}\\{\mathrm{1}}&{\mathrm{5}}&{\:\:\mathrm{4}}&{\:\:\mathrm{1}}\end{vmatrix}\underset{\underset{\mathrm{C3}+\mathrm{C4}} {\mathrm{C2}+\mathrm{C4}}} {\mathrm{C1}+\mathrm{C4}} \\ $$$$−\left(\mathrm{1}\right)\begin{vmatrix}{\mathrm{5}}&{\mathrm{4}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\:\:-\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\:\:\:\:\mathrm{4}}\end{vmatrix}\: \\ $$$$−\mathrm{1}\left(−\left(−\mathrm{1}\right)\:\right)\begin{vmatrix}{\mathrm{5}}&{\mathrm{4}}&{-\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\:\:\mathrm{2}}\end{vmatrix}\:\: \\ $$$$=−\begin{vmatrix}{\mathrm{5}}&{\mathrm{4}}\\{\mathrm{1}}&{\mathrm{5}}\end{vmatrix}\:\: \\ $$$$−\left(\mathrm{5}×\mathrm{5}−\mathrm{4}×\mathrm{1}\right)=−\mathrm{21} \\ $$

Commented by Mastermind last updated on 27/Jul/22

Thank you so much, God bless you

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com