Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 174389 by Best1 last updated on 31/Jul/22

what is  least upper bound of the  sequence {(1+(1/n))ln(1+(1/n))}_(n=1) ^∞ ?  A.0    B.ln2      C.ln5       D.2ln2

$${what}\:{is}\:\:{least}\:{upper}\:{bound}\:{of}\:{the} \\ $$$${sequence}\:\left\{\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\right\}_{{n}=\mathrm{1}} ^{\infty} ? \\ $$$${A}.\mathrm{0}\:\:\:\:{B}.{ln}\mathrm{2}\:\:\:\:\:\:{C}.{ln}\mathrm{5}\:\:\:\:\:\:\:{D}.\mathrm{2}{ln}\mathrm{2}\: \\ $$

Answered by Gazella thomsonii last updated on 31/Jul/22

Let′s think of a Sequence A_k  Function as f(z)  and Find Root f^((1)) (z)=0 for find inf [f(z),z_0 ]  so , f(z)=(1+(1/z))ln(1+(1/z))  ((df(z))/dz)=−((1/z))^2 ln(1+(1/z))−((1+(1/z))/(1+(1/z)))∙((d  )/dz)(1+(1/z))=0  ∴z_0 =−(e/(e−1))  inf[f(z),z=−(e/(e−1))]=lim_(x→z_0 ) f(z)=−(1/e)  But, z∈Z^+ /{0} we don′t need inf[f(z)] when z is less than 0   inf[f(z),z=∞]=0  (becauselim_(z→∞) f(z)=0)  sup is not Exist.  (because  lim_(z→0) f(z)=∞, f^((1)) (a)<0 ,a∈Z^+ /{0})

$$\mathrm{Let}'\mathrm{s}\:\mathrm{think}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Sequence}\:\mathrm{A}_{{k}} \:\mathrm{Function}\:\mathrm{as}\:{f}\left({z}\right) \\ $$$$\mathrm{and}\:\mathrm{Find}\:\mathrm{Root}\:{f}^{\left(\mathrm{1}\right)} \left({z}\right)=\mathrm{0}\:\mathrm{for}\:\mathrm{find}\:\mathrm{inf}\:\left[{f}\left({z}\right),{z}_{\mathrm{0}} \right] \\ $$$$\mathrm{so}\:,\:{f}\left({z}\right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{z}}\right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{z}}\right) \\ $$$$\frac{\mathrm{d}{f}\left({z}\right)}{\mathrm{d}{z}}=−\left(\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{z}}\right)−\frac{\mathrm{1}+\frac{\mathrm{1}}{{z}}}{\mathrm{1}+\frac{\mathrm{1}}{{z}}}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\left(\mathrm{1}+\frac{\mathrm{1}}{{z}}\right)=\mathrm{0} \\ $$$$\therefore{z}_{\mathrm{0}} =−\frac{{e}}{{e}−\mathrm{1}} \\ $$$$\mathrm{inf}\left[{f}\left({z}\right),{z}=−\frac{{e}}{{e}−\mathrm{1}}\right]=\underset{{x}\rightarrow{z}_{\mathrm{0}} } {\mathrm{lim}}{f}\left({z}\right)=−\frac{\mathrm{1}}{{e}} \\ $$$$\mathrm{But},\:{z}\in\mathbb{Z}^{+} /\left\{\mathrm{0}\right\}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:\mathrm{inf}\left[{f}\left({z}\right)\right]\:\mathrm{when}\:{z}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:\mathrm{0} \\ $$$$\:\mathrm{inf}\left[{f}\left({z}\right),{z}=\infty\right]=\mathrm{0}\:\:\left(\mathrm{because}\underset{{z}\rightarrow\infty} {\mathrm{lim}}{f}\left({z}\right)=\mathrm{0}\right) \\ $$$$\mathrm{sup}\:\mathrm{is}\:\mathrm{not}\:\mathrm{Exist}.\:\:\left(\mathrm{because}\:\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({z}\right)=\infty,\:{f}^{\left(\mathrm{1}\right)} \left({a}\right)<\mathrm{0}\:,{a}\in\mathbb{Z}^{+} /\left\{\mathrm{0}\right\}\right) \\ $$

Commented by Best1 last updated on 31/Jul/22

well but see it again

$${well}\:{but}\:{see}\:{it}\:{again} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com