Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 174407 by infinityaction last updated on 31/Jul/22

 evaluate     lim_(x→−∞)  ((3^(sinx ) +2x +1)/(sinx−(√(x^2 +1)) ))

$$\:{evaluate} \\ $$$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{sin}{x}\:} +\mathrm{2}{x}\:+\mathrm{1}}{\mathrm{sin}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:} \\ $$

Answered by CElcedricjunior last updated on 31/Jul/22

lim_(x→−∞) ((3^(sinx) +2x+1)/(sinx−(√(x^2 +1))))  or ∀x∈R −1≤sinx≤1  ⇔(1/3)≤3^(sinx) ≤3  ⇔(1/3)+2x+1≤3^(sinx) +2x+1≤4+2x  −1≤sinx≤1  −1−(√(x^2 +1))≤sinx−(√(1+x^2 ))≤1−(√(1+x^2 ))  ⇔(((4/3)+2x)/(−1−(√(1+x^2 ))))≤((3^(sinx) +2x+1)/(sinx−(√(1+x^2 ))))≤((4+2x)/(1−(√(1+x^2 ))))  lim_(x→−∞) (((4/3)+2x)/(−1−(√(1+x^2 ))))=lim_(x→−∞) (((4/3)+2x)/(−1−∣x∣(√(1+(1/x^2 )))))  =lim_(x→−∞) ((x((4/(3x))+2))/(x(−(1/x)+(√(1+(1/x^2 )))))) cas qd: { ((x−>−∞)),((∣x∣=−x)) :}  =2  lim_(x→−∞) ((4+2x)/(1−(√(1+x^2 ))))=2 en procedant de  la meme maniere  d′ou^� lim_(x→−∞) ((3^(sinx) +2x+1)/(sinx−(√(1+x^2 ))))=2  D ′apre^� s le the^� ore^� me des gendarmes    .........le ce^� le^� bre cedric junior...........

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{3}^{\boldsymbol{{sinx}}} +\mathrm{2}\boldsymbol{{x}}+\mathrm{1}}{\boldsymbol{{sinx}}−\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\boldsymbol{{or}}\:\forall\boldsymbol{{x}}\in\mathbb{R}\:−\mathrm{1}\leqslant\boldsymbol{{sinx}}\leqslant\mathrm{1} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{3}}\leqslant\mathrm{3}^{\boldsymbol{{sinx}}} \leqslant\mathrm{3} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{2}\boldsymbol{{x}}+\mathrm{1}\leqslant\mathrm{3}^{\boldsymbol{{sinx}}} +\mathrm{2}\boldsymbol{{x}}+\mathrm{1}\leqslant\mathrm{4}+\mathrm{2}\boldsymbol{{x}} \\ $$$$−\mathrm{1}\leqslant\boldsymbol{{sinx}}\leqslant\mathrm{1} \\ $$$$−\mathrm{1}−\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\leqslant\boldsymbol{{sinx}}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\leqslant\mathrm{1}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\frac{\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{2}\boldsymbol{{x}}}{−\mathrm{1}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\leqslant\frac{\mathrm{3}^{\boldsymbol{{sinx}}} +\mathrm{2}\boldsymbol{{x}}+\mathrm{1}}{\boldsymbol{{sinx}}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\leqslant\frac{\mathrm{4}+\mathrm{2}\boldsymbol{{x}}}{\mathrm{1}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{2}\boldsymbol{{x}}}{−\mathrm{1}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{2}{x}}{−\mathrm{1}−\mid\boldsymbol{{x}}\mid\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} }}} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\boldsymbol{{x}}\left(\frac{\mathrm{4}}{\mathrm{3}\boldsymbol{{x}}}+\mathrm{2}\right)}{\boldsymbol{{x}}\left(−\frac{\mathrm{1}}{\boldsymbol{{x}}}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} }}\right)}\:\boldsymbol{{cas}}\:\boldsymbol{{qd}}:\begin{cases}{\boldsymbol{{x}}−>−\infty}\\{\mid\boldsymbol{{x}}\mid=−\boldsymbol{{x}}}\end{cases} \\ $$$$=\mathrm{2} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{4}+\mathrm{2}\boldsymbol{{x}}}{\mathrm{1}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}=\mathrm{2}\:\boldsymbol{{en}}\:\boldsymbol{{procedant}}\:\boldsymbol{{de}} \\ $$$$\boldsymbol{{la}}\:\boldsymbol{{meme}}\:\boldsymbol{{maniere}} \\ $$$$\boldsymbol{{d}}'\boldsymbol{\mathrm{o}}\grave {\boldsymbol{\mathrm{u}}}\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{3}^{\boldsymbol{{sinx}}} +\mathrm{2}\boldsymbol{{x}}+\mathrm{1}}{\boldsymbol{{sinx}}−\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}=\mathrm{2} \\ $$$$\mathscr{D}\:'{apr}\grave {{e}s}\:{le}\:{th}\acute {{e}or}\grave {{e}me}\:{des}\:{gendarmes} \\ $$$$ \\ $$$$.........{le}\:{c}\acute {{e}l}\grave {{e}bre}\:{cedric}\:{junior}........... \\ $$$$ \\ $$$$ \\ $$

Commented by infinityaction last updated on 01/Aug/22

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com