Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174427 by mnjuly1970 last updated on 31/Jul/22

     solve  for   x ∈ R :     ((12+4x^  −x^( 2) ))^(1/4)  +(√(1+8x−2x^( 2) )) = 2x^( 2) −8x +13  ■

solveforxR:12+4xx24+1+8x2x2=2x28x+13

Answered by MJS_new last updated on 02/Aug/22

((12+4x−x^2 ))^(1/4) +(√(1+8x−2x^2 ))=13−8x+2x^2   x=(√y)+2  ((16−y))^(1/4) +(√(9−2y))=2y+5  now obviously y=0 because 2+3=5 ⇒  x=2

12+4xx24+1+8x2x2=138x+2x2x=y+216y4+92y=2y+5nowobviouslyy=0because2+3=5x=2

Commented by mnjuly1970 last updated on 01/Aug/22

thanks alot sir

thanksalotsir

Commented by MJS_new last updated on 01/Aug/22

I don′t think there are other solutions ∈C  Sirs, you have to test your solutions with  the given equation!

IdontthinkthereareothersolutionsCSirs,youhavetotestyoursolutionswiththegivenequation!

Commented by MJS_new last updated on 02/Aug/22

there was a typo x=(√y)+2  at least it′s obvious to me. to prove y=0 is  easy, simply insert. to prove there′s no other  solution you′ll have to solve it and show that  all the other solutions introduced by squaring  2 times are false. I haven′t got the time.

therewasatypox=y+2atleastitsobvioustome.toprovey=0iseasy,simplyinsert.toprovetheresnoothersolutionyoullhavetosolveitandshowthatalltheothersolutionsintroducedbysquaring2timesarefalse.Ihaventgotthetime.

Answered by behi834171 last updated on 01/Aug/22

1+8x−2x^2 =s^2 ,12+4x−x^2 =t^4   ⇒ { ((s+t=−s^2 +14⇒t=14−s−s^2 )),((s^2 −2t^4 =−23)) :}  ⇒s^2 −2(14−s−s^2 )^4 =−23⇒  s^2 −76832+10976s+10584s^2 −784s^3 −392s^4   +10976s−1568s^2 −1512s^3 +112s^4 +56s^5   +10584s^2 −1512s^3 −1458s^4 +108s^5 +54s^6   −784s^3 +112s^4 +108s^5 −8s^6 −4s^7   −392s^4 +56s^5 +54s^6 −4s^7 −2s^8 =−23  ⇒2s^8 +8s^7 −100s^6 −324s^5 +2018s^4   +4592s^3 −19691s^2 −21952s+76809=0   { ((s_1 =−5.44⇒−2x^2 +8x+1=29.6)),((s_2 =−3.36⇒−2x^2 +8x+1=11.3)) :}  ⇒ { ((x^2 −4x+14.3=0⇒x=2±3.2i)),((x^2 −4x+5.15=0⇒x=2±1.07i)) :}

1+8x2x2=s2,12+4xx2=t4{s+t=s2+14t=14ss2s22t4=23s22(14ss2)4=23s276832+10976s+10584s2784s3392s4+10976s1568s21512s3+112s4+56s5+10584s21512s31458s4+108s5+54s6784s3+112s4+108s58s64s7392s4+56s5+54s64s72s8=232s8+8s7100s6324s5+2018s4+4592s319691s221952s+76809=0{s1=5.442x2+8x+1=29.6s2=3.362x2+8x+1=11.3{x24x+14.3=0x=2±3.2ix24x+5.15=0x=2±1.07i

Commented by dragan91 last updated on 01/Aug/22

1+8x−2x^2 =s^2 ,12+4x−x^2 =t^4   ⇒ { ((∣s∣+∣t∣=−s^2 +14⇒t=14−s−s^2 )),((s^2 −2t^4 =−23)) :}  2t^4 −s^2 =23  ∣t∣=14−∣s∣−s^2   ∣s∣=3  ∣t∣=2  ⇒1+8x−2x^2 =9⇒x=2      ⇒s^2 −2(14−s−s^2 )^4 =−23⇒    s^2 −76832+10976s+10584s^2 −784s^3 −392s^4   +10976s−1568s^2 −1512s^3 +112s^4 +56s^5   +10584s^2 −1512s^3 −1458s^4 +108s^5 +54s^6   −784s^3 +112s^4 +108s^5 −8s^6 −4s^7   −392s^4 +56s^5 +54s^6 −4s^7 −2s^8 =−23  ⇒2s^8 +8s^7 −100s^6 −324s^5 +2018s^4   +4592s^3 −19691s^2 −21952s+76809=0   { ((s_1 =−5.44⇒−2x^2 +8x+1=29.6)),((s_2 =−3.36⇒−2x^2 +8x+1=11.3)) :}  ⇒ { ((x^2 −4x+14.3=0⇒x=2±3.2i)),((x^2 −4x+5.15=0⇒x=2±1.07i)) :}

1+8x2x2=s2,12+4xx2=t4{s+t∣=s2+14t=14ss2s22t4=232t4s2=23t∣=14ss2s∣=3t∣=21+8x2x2=9x=2s22(14ss2)4=23s276832+10976s+10584s2784s3392s4+10976s1568s21512s3+112s4+56s5+10584s21512s31458s4+108s5+54s6784s3+112s4+108s58s64s7392s4+56s5+54s64s72s8=232s8+8s7100s6324s5+2018s4+4592s319691s221952s+76809=0{s1=5.442x2+8x+1=29.6s2=3.362x2+8x+1=11.3{x24x+14.3=0x=2±3.2ix24x+5.15=0x=2±1.07i

Commented by MJS_new last updated on 02/Aug/22

you must test these solutions, they are false

youmusttestthesesolutions,theyarefalse

Commented by Tawa11 last updated on 02/Aug/22

Great sirs

Greatsirs

Answered by dragan91 last updated on 03/Aug/22

((16−4+4x−x^2 ))^(1/4) +(√(9−8+8x−2x^2 ))=2x^2 −8x+8+5  ((2^4 −(x−2)^2 ))^(1/4) +(√(3^2 −2(x−2)^2 ))=2(x−2)^2 +5  ((2^4 −(x−2)^2 ))^(1/4) ≤2  (√(3^2 −2(x−2)^2 ))≤3  2(x−2)^2 ≥5  only posible case 2+3=5  2(x−2)^2 +5=5  x−2=0⇒x=2

164+4xx24+98+8x2x2=2x28x+8+524(x2)24+322(x2)2=2(x2)2+524(x2)242322(x2)232(x2)25onlyposiblecase2+3=52(x2)2+5=5x2=0x=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com