Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 174508 by Gbenga last updated on 03/Aug/22

  L(sin^n (x))=?

$$ \\ $$$$\mathscr{L}\left(\boldsymbol{\mathrm{sin}}^{\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)\right)=? \\ $$

Answered by Mathspace last updated on 03/Aug/22

sin^n x=(((e^(ix) −e^(−ix) )/(2i)))^n   =(1/((2i)^n ))Σ_(k=0) ^n C_n ^k (e^(ix) )^k (−e^(−ix) )^(n−k)   =(1/((2i)^n ))Σ_(k=0) ^n C_n ^k (−1)^(n−k) e^(ikx−i(n−k)x)   =(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k e^(i(2k−n)x)   =(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k {cos(2k−n)x +isin(2k−n)x}  ⇒L(sin^n x)  =(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k L(cos(2k−n)x  +i(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k L(sin(2k−n)x  L(cos(2k−n)x)  =∫_0 ^∞  cos(2k−n)t e^(−xt) dt  =Re(∫_0 ^∞  e^(−xt+i(2k−n)t) dt)  and ∫_0 ^∞  e^((−x+i(2k−n))t) dt  =[(1/(−x+i(2k−n)))e^((−x+i(2k−n))t) ]_0 ^∞   =−(1/(−x+i(2k−n)))  =(1/(x−i(2k−n)))=((x+i(2k−n))/(x^2 +(2k−n)^2 ))  ⇒Re(....)=(x/(x^2 +(2k−n)^2 )) ⇒  L(sin^n x)  =(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k  (x/(x^2 +(2k−n)^2 ))  +i(((−1)^n )/((2i)^n ))Σ_(k=0) ^n (−1)^k C_n ^k  ((2k−n)/(x^2 +(2k−n)^2 ))

$${sin}^{{n}} {x}=\left(\frac{{e}^{{ix}} −{e}^{−{ix}} }{\mathrm{2}{i}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \left({e}^{{ix}} \right)^{{k}} \left(−{e}^{−{ix}} \right)^{{n}−{k}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{n}−{k}} {e}^{{ikx}−{i}\left({n}−{k}\right){x}} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} {e}^{{i}\left(\mathrm{2}{k}−{n}\right){x}} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} \left\{{cos}\left(\mathrm{2}{k}−{n}\right){x}\:+{isin}\left(\mathrm{2}{k}−{n}\right){x}\right\} \\ $$$$\Rightarrow{L}\left({sin}^{{n}} {x}\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} {L}\left({cos}\left(\mathrm{2}{k}−{n}\right){x}\right. \\ $$$$+{i}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} {L}\left({sin}\left(\mathrm{2}{k}−{n}\right){x}\right. \\ $$$${L}\left({cos}\left(\mathrm{2}{k}−{n}\right){x}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{cos}\left(\mathrm{2}{k}−{n}\right){t}\:{e}^{−{xt}} {dt} \\ $$$$={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}+{i}\left(\mathrm{2}{k}−{n}\right){t}} {dt}\right) \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−{x}+{i}\left(\mathrm{2}{k}−{n}\right)\right){t}} {dt} \\ $$$$=\left[\frac{\mathrm{1}}{−{x}+{i}\left(\mathrm{2}{k}−{n}\right)}{e}^{\left(−{x}+{i}\left(\mathrm{2}{k}−{n}\right)\right){t}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=−\frac{\mathrm{1}}{−{x}+{i}\left(\mathrm{2}{k}−{n}\right)} \\ $$$$=\frac{\mathrm{1}}{{x}−{i}\left(\mathrm{2}{k}−{n}\right)}=\frac{{x}+{i}\left(\mathrm{2}{k}−{n}\right)}{{x}^{\mathrm{2}} +\left(\mathrm{2}{k}−{n}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{Re}\left(....\right)=\frac{{x}}{{x}^{\mathrm{2}} +\left(\mathrm{2}{k}−{n}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${L}\left({sin}^{{n}} {x}\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} \:\frac{{x}}{{x}^{\mathrm{2}} +\left(\mathrm{2}{k}−{n}\right)^{\mathrm{2}} } \\ $$$$+{i}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{i}\right)^{{n}} }\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {C}_{{n}} ^{{k}} \:\frac{\mathrm{2}{k}−{n}}{{x}^{\mathrm{2}} +\left(\mathrm{2}{k}−{n}\right)^{\mathrm{2}} } \\ $$

Commented by Gbenga last updated on 03/Aug/22

thanks sk

$${thanks}\:{sk} \\ $$

Commented by Tawa11 last updated on 03/Aug/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by Mathspace last updated on 03/Aug/22

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com