Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 174514 by Best1 last updated on 03/Aug/22

a+b+c=1  a^2 +b^2 +c^2 =2  a^3 +b^3 +c^3 =3  then a^5 +b^5 +c^5  ?

a+b+c=1a2+b2+c2=2a3+b3+c3=3thena5+b5+c5?

Commented by mr W last updated on 03/Aug/22

see Q74970

seeQ74970

Answered by RedMath last updated on 03/Aug/22

no idea lol

noidealol

Commented by Best1 last updated on 03/Aug/22

sorry

sorry

Answered by MJS_new last updated on 03/Aug/22

1. a+b+c=α  2. a^2 +b^2 +c^2 =β  3.a^3 +b^3 +c^3 =γ  ========================  let a=u−(√v)∧b=u+(√v)  ⇒  1. c=α−2u  2. 6u^2 −4αu+2v+α^2 −β=0  3. −6u^3 +12αu^2 +6u(v−α^2 )+α^3 −γ=0  ========================  2. v=−3u^2 +2αu−((α^2 −β)/2)  3. u^3 −αu^2 +((3α^2 −β)/8)u=((α^3 −γ)/(24))  ========================  a^4 +b^4 +c^4 =  =−32α(u^3 −αu^2 +((3α^2 −β)/8)u)+((3α^4 −2α^2 β+β^2 )/2)=  =((α^4 −6α^2 β+8αγ+3β^2 )/6)  ========================  a^5 +b^5 +c^5 =  =−20(α^2 +β)(u^3 −αu^2 +((3α^2 −β)/8)u)+α^5 =  =((α^5 −5(α^3 β−α^2 γ−5lβγ))/6)  ========================

1.a+b+c=α2.a2+b2+c2=β3.a3+b3+c3=γ========================leta=uvb=u+v1.c=α2u2.6u24αu+2v+α2β=03.6u3+12αu2+6u(vα2)+α3γ=0========================2.v=3u2+2αuα2β23.u3αu2+3α2β8u=α3γ24========================a4+b4+c4==32α(u3αu2+3α2β8u)+3α42α2β+β22==α46α2β+8αγ+3β26========================a5+b5+c5==20(α2+β)(u3αu2+3α2β8u)+α5==α55(α3βα2γ5lβγ)6========================

Commented by Tawa11 last updated on 03/Aug/22

Great sirs.

Greatsirs.

Answered by behi834171 last updated on 03/Aug/22

a^2 +ab+ac=a  ab+b^2 +bc=b  ac+bc+c^2 =c⇒2Σab=Σa−Σa^2 =1−2=−1  ⇒Σab=−(1/2)  a^3 +a(b^2 +c^2 )=2a  b(a^2 +c^2 )+b^3 =2b  c(a^2 +b^2 )+c^3 =2c⇒  ⇒Σab(a+b)=2Σa−Σa^3 =2−3=−1  ⇒Σab(1−c)=−1⇒Σab−3abc=−1  ⇒−3abc=−1+(1/2)=−(1/2)⇒abc=(1/6)  so:a,b,c, are the roots of equation:       z^3 −z^2 −(1/2)z−(1/6)=0  z^5 =z^3 .z^2 =z^2 (z^2 +(1/2)z+(1/6))=z^4 +(1/2)z^3 +(1/6)z^2 =  =z(z^2 +(1/2)z+(1/6))+(1/2)(z^2 +(1/2)z+(1/6))+(1/6)z^2 =  =z^2 +(1/2)z+(1/6)+(1/2)z^2 +(1/6)z+(1/2)z^2 +(1/4)z+(1/(12))+(1/6)z^2 =  =((13)/6)z^2 +((11)/(12))z+(1/4)  ⇒Σa^5 =((13)/6)Σa^2 +((11)/(12))Σa+(3/4)=  =((13)/6)×2+((11)/(12))×1+(3/4)=6    .■  ......................................  by using symbols of dear mr:MJS_new  Σab=((Σa−Σa^2 )/2)=((𝛂−𝛃)/2)  Σab−3abc=2Σa−Σa^3 ⇒  abc=−(1/3)(2𝛂−𝛄−((𝛂−𝛃)/2))=−((3𝛂+𝛃−2𝛄)/6)  ⇒z^3 −𝛂z^2 +((𝛂−𝛃)/2)z+((3𝛂+𝛃−2𝛄)/6)=0  ⇒z^5 =z^2 z^3 =z^2 (𝛂z^2 −((𝛂−𝛃)/2)z−((3𝛂+𝛃−2𝛄)/6))=  =𝛂z(𝛂z^2 −((𝛂−𝛃)/2)z−((3𝛂+𝛃−2𝛄)/6))−((𝛂−𝛃)/2)(𝛂z^2 −((𝛂−𝛃)/2)z−((3𝛂+𝛃−2𝛄)/6))−((3𝛂+𝛃−2𝛄)/6)z^2 =  =𝛂^2 (𝛂z^2 −((𝛂−𝛃)/2)z−((3𝛂+𝛃−2𝛄)/6))−((𝛂(𝛂−𝛃))/2)z^2 −((𝛂(3𝛂+𝛃−2𝛄))/6)z−  +((𝛂(𝛂−𝛃))/2)z^2 +(((𝛂−𝛃)^2 )/4)z+(((𝛂−𝛃)(3𝛂+𝛃−2𝛄))/(12))−((3𝛂+𝛃−2𝛄)/6)z^2 =  =[𝛂^3 −((𝛂(𝛂−𝛃))/2)−((3𝛂+𝛃−2𝛄)/6)]z^2 −[((𝛂^2 (𝛂−𝛃))/2)+((𝛂(3𝛂+𝛃−2𝛄))/6)−(((𝛂−𝛃)^2 )/4)].z−  −(((2𝛂^2 −𝛂+𝛃)(3𝛂+𝛃−2𝛄))/(12))  =A.z^2 +B.z+C  A=((6𝛂^3 −3𝛂^2 +3𝛂𝛃−3𝛂−𝛃+2𝛄)/6)  B=−((6𝛂^3 −6𝛂^2 𝛃+3𝛂^2 +8𝛂𝛃−4𝛂𝛄−3𝛃^2 )/(12))  C=−((6𝛂^3 +2𝛂^2 𝛃−4𝛂^2 𝛄−3𝛂^2 +2𝛂𝛃+2𝛂𝛄+𝛃^2 −2𝛃𝛄)/(12))  ⇒Σa^5 =A.Σa^2 +B.Σa+3C

a2+ab+ac=aab+b2+bc=bac+bc+c2=c2Σab=ΣaΣa2=12=1Σab=12a3+a(b2+c2)=2ab(a2+c2)+b3=2bc(a2+b2)+c3=2cΣab(a+b)=2ΣaΣa3=23=1Σab(1c)=1Σab3abc=13abc=1+12=12abc=16so:a,b,c,aretherootsofequation:z3z212z16=0z5=z3.z2=z2(z2+12z+16)=z4+12z3+16z2==z(z2+12z+16)+12(z2+12z+16)+16z2==z2+12z+16+12z2+16z+12z2+14z+112+16z2==136z2+1112z+14Σa5=136Σa2+1112Σa+34==136×2+1112×1+34=6.......................................byusingsymbolsofdearmr:MJS_newΣab=ΣaΣa22=αβ2Σab3abc=2ΣaΣa3abc=13(2αγαβ2)=3α+β2γ6z3αz2+αβ2z+3α+β2γ6=0z5=z2z3=z2(αz2αβ2z3α+β2γ6)==αz(αz2αβ2z3α+β2γ6)αβ2(αz2αβ2z3α+β2γ6)3α+β2γ6z2==α2(αz2αβ2z3α+β2γ6)α(αβ)2z2α(3α+β2γ)6z+α(αβ)2z2+(αβ)24z+(αβ)(3α+β2γ)123α+β2γ6z2==[α3α(αβ)23α+β2γ6]z2[α2(αβ)2+α(3α+β2γ)6(αβ)24].z(2α2α+β)(3α+β2γ)12=A.z2+B.z+CA=6α33α2+3αβ3αβ+2γ6B=6α36α2β+3α2+8αβ4αγ3β212C=6α3+2α2β4α2γ3α2+2αβ+2αγ+β22βγ12Σa5=A.Σa2+B.Σa+3C

Commented by Best1 last updated on 03/Aug/22

  wawww thanks guys

wawwwthanksguys

Commented by Tawa11 last updated on 03/Aug/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com