Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174684 by mnjuly1970 last updated on 08/Aug/22

  Q:  I , J  are two ideals of  commutative       ring , ( R ,⊕,   ) .prove that :                (√( I ∩ J ))  =^?  (√( I ))  ∩  (√( J ))     m.n      note : (√(I )) = { x ∈ R ∣ ∃ n∈ N , x^( n)  ∈ I }

$$ \\ $$$$\boldsymbol{\mathrm{Q}}:\:\:\boldsymbol{\mathrm{I}}\:,\:\boldsymbol{\mathrm{J}}\:\:\boldsymbol{{are}}\:\boldsymbol{{two}}\:\boldsymbol{{ideals}}\:\boldsymbol{{of}}\:\:\boldsymbol{{commutative}}\: \\ $$$$\:\:\:\:\boldsymbol{{ring}}\:,\:\left(\:\boldsymbol{\mathrm{R}}\:,\oplus,\: \:\right)\:.\boldsymbol{{prove}}\:\boldsymbol{{that}}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\sqrt{\:\boldsymbol{\mathrm{I}}\:\cap\:\boldsymbol{\mathrm{J}}\:}\:\:\overset{?} {=}\:\sqrt{\:\boldsymbol{\mathrm{I}}\:}\:\:\cap\:\:\sqrt{\:\boldsymbol{\mathrm{J}}\:}\:\:\:\:\:\boldsymbol{{m}}.\boldsymbol{{n}} \\ $$$$\:\:\:\:\boldsymbol{{note}}\::\:\sqrt{\boldsymbol{\mathrm{I}}\:}\:=\:\left\{\:\boldsymbol{{x}}\:\in\:\boldsymbol{\mathrm{R}}\:\mid\:\exists\:\boldsymbol{{n}}\in\:\mathbb{N}\:,\:\boldsymbol{{x}}^{\:\boldsymbol{{n}}} \:\in\:\boldsymbol{\mathrm{I}}\:\right\}\: \\ $$$$\: \\ $$

Answered by mindispower last updated on 09/Aug/22

I∩J ideal  (√(I∩J))={x∈R ∣∃n∈N x^n ∈I∩J}  x^n ∈I⇒x∈(√I)  x^n ∈J⇒x∈(√j)  ⇒x∈(√I)∩(√J)⇒(√(I∩J))⊂(√I)∩(√J)  x∈(√I)∩(√J)⇒∃n,m ∣x^n ∈I ,x^m ∈J  x^(n+m) ∈I“ x^n .x^m ∈x^m .I=I,“x^(n+m) ∈J,x^(m+n) =x^n .x^m ∈x^n J=J}  ⇒x^(n+m) ∈I∩J⇒x∈(√(I∩J))⇒(√I)∩(√J)⊂(√(I∩J))  (√(I∩J))=(√I)∩(√J)

$${I}\cap{J}\:{ideal} \\ $$$$\sqrt{{I}\cap{J}}=\left\{{x}\in{R}\:\mid\exists{n}\in{N}\:{x}^{{n}} \in{I}\cap{J}\right\} \\ $$$${x}^{{n}} \in{I}\Rightarrow{x}\in\sqrt{{I}} \\ $$$${x}^{{n}} \in{J}\Rightarrow{x}\in\sqrt{{j}} \\ $$$$\Rightarrow{x}\in\sqrt{{I}}\cap\sqrt{{J}}\Rightarrow\sqrt{{I}\cap{J}}\subset\sqrt{{I}}\cap\sqrt{{J}} \\ $$$${x}\in\sqrt{{I}}\cap\sqrt{{J}}\Rightarrow\exists{n},{m}\:\mid{x}^{{n}} \in{I}\:,{x}^{{m}} \in{J} \\ $$$$\left.{x}^{{n}+{m}} \in{I}``\:{x}^{{n}} .{x}^{{m}} \in{x}^{{m}} .{I}={I},``{x}^{{n}+{m}} \in{J},{x}^{{m}+{n}} ={x}^{{n}} .{x}^{{m}} \in{x}^{{n}} {J}={J}\right\} \\ $$$$\Rightarrow{x}^{{n}+{m}} \in{I}\cap{J}\Rightarrow{x}\in\sqrt{{I}\cap{J}}\Rightarrow\sqrt{{I}}\cap\sqrt{{J}}\subset\sqrt{{I}\cap{J}} \\ $$$$\sqrt{{I}\cap{J}}=\sqrt{{I}}\cap\sqrt{{J}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 14/Aug/22

  thanks alot  sir power...

$$\:\:{thanks}\:{alot}\:\:{sir}\:{power}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com