Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 174876 by infinityaction last updated on 13/Aug/22

  let f:[0,1]→R be a continuous   function ditermine (with appropriate  justification) the following     limit: lim_(n→∞)  ∫_0 ^1 nx^n f(x)dx

$$\:\:\mathrm{let}\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}\:{be}\:{a}\:\mathrm{continuous} \\ $$$$\:\mathrm{function}\:\mathrm{ditermine}\:\left(\mathrm{with}\:\mathrm{appropriate}\right. \\ $$$$\left.\mathrm{justification}\right)\:\mathrm{the}\:\mathrm{following}\: \\ $$$$\:\:\mathrm{limit}:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$

Answered by TheHoneyCat last updated on 13/Aug/22

Sorry if it sounds rude, but your question is  either meaningless or trivial  when you write:  lim_(x→∞)  ∫_0 ^1 nx^n f(x)dx  if you have a signle x it does′t mean anything    now if you mean: (x≠x)  lim_(x→∞)  ∫_0 ^1 nx^n f(x)dx  the limit is useless so the result is  ∫_0 ^1 nx^n f(x)dx    if you mean:  lim_(x→∞)  ∫_0 ^1 nx^n f(x)dx  or   lim_(x→∞)  ∫_0 ^1 nx^n f(x)dx  it′s also very trivial  I think you probably meant  lim_(n→∞) ∫_0 ^1 nx^n f(x)dx       f beeing Continuous on an interval, it is  bounded  let F ∈R_+  ∀ε<1  ∫_0 ^ε nx^n Fdx=(n/(n+1))ε^(n+1) F              (1)  and ∫_0 ^1 nx^n Fdx=(n/(n+1))F              (2)  So we can use (2) to get that the integral   cannot be bigger that the maximal value of F  nor smaler than the smallest.  because (2)→_(n→∞) F  while (1) shows that the values smaler that  the part of f on values smaler than 1 has no importance.  because (1)→_(n→∞) 0  By considering increasingly bigger ε we find  lim_(n→∞) ∫_0 ^1 nx^n f(x)dx=f(1)    _□

$$\mathrm{Sorry}\:\mathrm{if}\:\mathrm{it}\:\mathrm{sounds}\:\mathrm{rude},\:\mathrm{but}\:\mathrm{your}\:\mathrm{question}\:\mathrm{is} \\ $$$$\mathrm{either}\:\mathrm{meaningless}\:\mathrm{or}\:\mathrm{trivial} \\ $$$$\mathrm{when}\:\mathrm{you}\:\mathrm{write}: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$$$\mathrm{if}\:\mathrm{you}\:\mathrm{have}\:\mathrm{a}\:\mathrm{signle}\:{x}\:\mathrm{it}\:\mathrm{does}'\mathrm{t}\:\mathrm{mean}\:\mathrm{anything} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{if}\:\mathrm{you}\:\mathrm{mean}:\:\left({x}\neq{x}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$$$\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{useless}\:\mathrm{so}\:\mathrm{the}\:\mathrm{result}\:\mathrm{is} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{you}\:\mathrm{mean}: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$$$\mathrm{or}\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right){dx} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{also}\:\mathrm{very}\:\mathrm{trivial} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{probably}\:\mathrm{meant} \\ $$$$\mathrm{lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right)\mathrm{d}{x}\: \\ $$$$ \\ $$$$ \\ $$$${f}\:\mathrm{beeing}\:\mathrm{Continuous}\:\mathrm{on}\:\mathrm{an}\:\mathrm{interval},\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{bounded} \\ $$$$\mathrm{let}\:{F}\:\in\mathbb{R}_{+} \:\forall\epsilon<\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\epsilon} {nx}^{{n}} {F}\mathrm{d}{x}=\frac{{n}}{{n}+\mathrm{1}}\epsilon^{{n}+\mathrm{1}} {F}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {F}\mathrm{d}{x}=\frac{{n}}{{n}+\mathrm{1}}{F}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\left(\mathrm{2}\right)\:\mathrm{to}\:\mathrm{get}\:\mathrm{that}\:\mathrm{the}\:\mathrm{integral}\: \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\mathrm{bigger}\:\mathrm{that}\:\mathrm{the}\:\mathrm{maximal}\:\mathrm{value}\:\mathrm{of}\:\mathrm{F} \\ $$$$\mathrm{nor}\:\mathrm{smaler}\:\mathrm{than}\:\mathrm{the}\:\mathrm{smallest}. \\ $$$${because}\:\left(\mathrm{2}\right)\underset{{n}\rightarrow\infty} {\rightarrow}{F} \\ $$$$\mathrm{while}\:\left(\mathrm{1}\right)\:\mathrm{shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{values}\:\mathrm{smaler}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{part}\:\mathrm{of}\:{f}\:\mathrm{on}\:\mathrm{values}\:\mathrm{smaler}\:\mathrm{than}\:\mathrm{1}\:\mathrm{has}\:\mathrm{no}\:\mathrm{importance}. \\ $$$${because}\:\left(\mathrm{1}\right)\underset{{n}\rightarrow\infty} {\rightarrow}\mathrm{0} \\ $$$$\mathrm{By}\:\mathrm{considering}\:\mathrm{increasingly}\:\mathrm{bigger}\:\epsilon\:\mathrm{we}\:\mathrm{find} \\ $$$$\mathrm{lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}} {f}\left({x}\right)\mathrm{d}{x}={f}\left(\mathrm{1}\right)\:\:\:\:_{\Box} \\ $$

Commented by infinityaction last updated on 13/Aug/22

yes sir it is  lim_(n→∞)    thanks

$${yes}\:{sir}\:{it}\:{is}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\: \\ $$$${thanks} \\ $$

Commented by TheHoneyCat last updated on 23/Aug/22

your welcome  ;•)

$$\mathrm{your}\:\mathrm{welcome} \\ $$$$\left.;\bullet\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com