Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 174883 by infinityaction last updated on 13/Aug/22

   lim_(n→∞)  ∫_0 ^1 e^x^2  sin(nx)dx

$$\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } \mathrm{sin}\left({nx}\right){dx}\: \\ $$

Answered by Mathspace last updated on 14/Aug/22

u_n =∫_0 ^1 e^x^2  sin(nx)dx  ⇒u_n =_(nx=t)   ∫_0 ^n  e^(t^2 /n^2 )   sint (dt/n)  =∫_R (1/n) e^(t^2 /n^2 )   sint χ_([0,n[) (t)dt  =∫_R  f_n (t)dt  f_n →0  (cs)  ⇒lim u_n =0

$${u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {sin}\left({nx}\right){dx} \\ $$$$\Rightarrow{u}_{{n}} =_{{nx}={t}} \:\:\int_{\mathrm{0}} ^{{n}} \:{e}^{\frac{{t}^{\mathrm{2}} }{{n}^{\mathrm{2}} }} \:\:{sint}\:\frac{{dt}}{{n}} \\ $$$$=\int_{{R}} \frac{\mathrm{1}}{{n}}\:{e}^{\frac{{t}^{\mathrm{2}} }{{n}^{\mathrm{2}} }} \:\:{sint}\:\chi_{\left[\mathrm{0},{n}\left[\right.\right.} \left({t}\right){dt} \\ $$$$=\int_{{R}} \:{f}_{{n}} \left({t}\right){dt} \\ $$$${f}_{{n}} \rightarrow\mathrm{0}\:\:\left({cs}\right)\:\:\Rightarrow{lim}\:{u}_{{n}} =\mathrm{0} \\ $$

Answered by Mathspace last updated on 14/Aug/22

another way  by  ρarts   u_n =[−(1/n)cos(nx)e^x^2  ]_0 ^1   +(1/n)∫_0 ^1  e^x^2  cos(nx)dx  (1/n)−e((cosn)/n) +(1/n)∫_0 ^1 e^x^2  cos(nx)dx  ∣u_n ∣≤(1/n)+(e/n) +(1/n)∫_0 ^1 e^x^2  dx→0(n→+∞)  ⇒lim u_n =0

$${another}\:{way} \\ $$$${by}\:\:\rho{arts}\: \\ $$$${u}_{{n}} =\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right){e}^{{x}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$+\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{x}^{\mathrm{2}} } {cos}\left({nx}\right){dx} \\ $$$$\frac{\mathrm{1}}{{n}}−{e}\frac{{cosn}}{{n}}\:+\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {cos}\left({nx}\right){dx} \\ $$$$\mid{u}_{{n}} \mid\leqslant\frac{\mathrm{1}}{{n}}+\frac{{e}}{{n}}\:+\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}\rightarrow\mathrm{0}\left({n}\rightarrow+\infty\right) \\ $$$$\Rightarrow{lim}\:{u}_{{n}} =\mathrm{0} \\ $$$$ \\ $$

Commented by infinityaction last updated on 14/Aug/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com