Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 175012 by lapache last updated on 16/Aug/22

prove: Use the residus form  ∫_0 ^(+∞) ((xsinx)/((x^2 +1)^2 ))dx=(π/(4e))

$${prove}:\:{Use}\:{the}\:{residus}\:{form} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{xsinx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{4}{e}} \\ $$

Answered by Mathspace last updated on 16/Aug/22

letI=∫_0 ^∞  ((xsinx)/((x^2 +1)^2 )) ⇒  2I=∫_(−∞) ^(+∞) ((xsinx)/((x^2 +1)^2 ))dx  =Im(∫_(−∞) ^(+∞) ((xe^(ix) )/((x^2 +1)^2 ))dx)  Ψ(z)=((ze^(iz) )/((z^2 +1)^2 ))  poles of Ψ?  Ψ(z)=((ze^(iz) )/((z−i)^2 (z+i)^2 ))  so the poles are +^− i(doubles)  ∫_(−∞) ^(+∞) Ψ(z)dz=2iπRes(Ψ,i)  Res(Ψ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 Ψ(z)}^((1))   =lim_(z→i) {((ze^(iz) )/((z+i)^2 ))}^((1))   =lim_(z→i)    (((e^(iz) +ize^(iz) )(z+i)^2 −2(z+i)ze^(iz) )/((z+i)^4 ))  =lim_(z→i) (((1+iz)e^(iz) (z+i)−2ze^(iz) )/((z+i)^3 ))  =((−2ie^(−1) )/((2i)^3 ))=((−2ie^(−1) )/(−8i))=(1/(4e))  ∫_(−∞) ^(+∞) Ψ(z)dz=2iπ.(1/(4e))=((iπ)/(2e))  so 2I=(π/(2e)) ⇒★I=(π/(4e))★

$${letI}=\int_{\mathrm{0}} ^{\infty} \:\frac{{xsinx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{2}{I}=\int_{−\infty} ^{+\infty} \frac{{xsinx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$={Im}\left(\int_{−\infty} ^{+\infty} \frac{{xe}^{{ix}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\right) \\ $$$$\Psi\left({z}\right)=\frac{{ze}^{{iz}} }{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\:{poles}\:{of}\:\Psi? \\ $$$$\Psi\left({z}\right)=\frac{{ze}^{{iz}} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} } \\ $$$${so}\:{the}\:{poles}\:{are}\:\overset{−} {+}{i}\left({doubles}\right) \\ $$$$\int_{−\infty} ^{+\infty} \Psi\left({z}\right){dz}=\mathrm{2}{i}\pi{Res}\left(\Psi,{i}\right) \\ $$$${Res}\left(\Psi,{i}\right)={lim}_{{z}\rightarrow{i}} \frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{2}} \Psi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \left\{\frac{{ze}^{{iz}} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\left({e}^{{iz}} +{ize}^{{iz}} \right)\left({z}+{i}\right)^{\mathrm{2}} −\mathrm{2}\left({z}+{i}\right){ze}^{{iz}} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \frac{\left(\mathrm{1}+{iz}\right){e}^{{iz}} \left({z}+{i}\right)−\mathrm{2}{ze}^{{iz}} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{−\mathrm{2}{ie}^{−\mathrm{1}} }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }=\frac{−\mathrm{2}{ie}^{−\mathrm{1}} }{−\mathrm{8}{i}}=\frac{\mathrm{1}}{\mathrm{4}{e}} \\ $$$$\int_{−\infty} ^{+\infty} \Psi\left({z}\right){dz}=\mathrm{2}{i}\pi.\frac{\mathrm{1}}{\mathrm{4}{e}}=\frac{{i}\pi}{\mathrm{2}{e}} \\ $$$${so}\:\mathrm{2}{I}=\frac{\pi}{\mathrm{2}{e}}\:\Rightarrow\bigstar{I}=\frac{\pi}{\mathrm{4}{e}}\bigstar \\ $$

Commented by Mathspace last updated on 16/Aug/22

thank you

$${thank}\:{you}\: \\ $$

Commented by Tawa11 last updated on 16/Aug/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com