Question and Answers Forum

All Questions      Topic List

Oscillation and Waves Questions

Previous in All Question      Next in All Question      

Previous in Oscillation and Waves      Next in Oscillation and Waves      

Question Number 175059 by mr W last updated on 17/Aug/22

Commented by mr W last updated on 17/Aug/22

a solid hemisphere with mass M and  radius R is connected with a thin rod   with mass m and length L at the   center.  find the period of small oscillations.

$${a}\:{solid}\:{hemisphere}\:{with}\:{mass}\:{M}\:{and} \\ $$$${radius}\:{R}\:{is}\:{connected}\:{with}\:{a}\:{thin}\:{rod}\: \\ $$$${with}\:{mass}\:{m}\:{and}\:{length}\:{L}\:{at}\:{the}\: \\ $$$${center}. \\ $$$${find}\:{the}\:{period}\:{of}\:{small}\:{oscillations}. \\ $$

Commented by mr W last updated on 18/Aug/22

Answered by mr W last updated on 18/Aug/22

Commented by mr W last updated on 18/Aug/22

OA=(L/2)  OB=((3R)/8)  e=OC  e+(L/2)=(M/(m+M))×((L/2)+((3R)/8))  e=(M/(m+M))×((L/2)+((3R)/8))−(L/2)>0  I_P =((mL^2 )/(12))+m(R+(L/2))^2 +((83MR^2 )/(320))+M(((5R)/8))^2   I_P =m((L^2 /3)+R^2 +RL)+((13MR^2 )/(20))

$${OA}=\frac{{L}}{\mathrm{2}} \\ $$$${OB}=\frac{\mathrm{3}{R}}{\mathrm{8}} \\ $$$${e}={OC} \\ $$$${e}+\frac{{L}}{\mathrm{2}}=\frac{{M}}{{m}+{M}}×\left(\frac{{L}}{\mathrm{2}}+\frac{\mathrm{3}{R}}{\mathrm{8}}\right) \\ $$$${e}=\frac{{M}}{{m}+{M}}×\left(\frac{{L}}{\mathrm{2}}+\frac{\mathrm{3}{R}}{\mathrm{8}}\right)−\frac{{L}}{\mathrm{2}}>\mathrm{0} \\ $$$${I}_{{P}} =\frac{{mL}^{\mathrm{2}} }{\mathrm{12}}+{m}\left({R}+\frac{{L}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{83}{MR}^{\mathrm{2}} }{\mathrm{320}}+{M}\left(\frac{\mathrm{5}{R}}{\mathrm{8}}\right)^{\mathrm{2}} \\ $$$${I}_{{P}} ={m}\left(\frac{{L}^{\mathrm{2}} }{\mathrm{3}}+{R}^{\mathrm{2}} +{RL}\right)+\frac{\mathrm{13}{MR}^{\mathrm{2}} }{\mathrm{20}} \\ $$

Commented by mr W last updated on 18/Aug/22

Commented by mr W last updated on 18/Aug/22

I_p ((dθ/dt))^2 +(m+M)g(R−e cos θ)=E=constant  2I_p ((dθ/dt))(d^2 θ/dt^2 )+(m+M)ge sin θ (dθ/dt)=0  2I_p (d^2 θ/dt^2 )+(m+M)ge sin θ=0  for small θ, sin θ≈θ  ⇒(d^2 θ/dt^2 )+(((m+M)eg)/(2I_P ))θ=0    → d.e. of s.h.m.  ω=(√(((m+M)eg)/(2I_P )))=(1/2)(√(([4(M−m)L+3MR]g)/(2m((L^2 /3)+R^2 +RL)+((13MR^2 )/(10)))))  T=((2π)/ω)=4π(√((20m((L^2 /3)+R^2 +RL)+13MR^2 )/(10[4(M−m)L+3MR]g)))

$${I}_{{p}} \left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} +\left({m}+{M}\right){g}\left({R}−{e}\:\mathrm{cos}\:\theta\right)={E}={constant} \\ $$$$\mathrm{2}{I}_{{p}} \left(\frac{{d}\theta}{{dt}}\right)\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\left({m}+{M}\right){ge}\:\mathrm{sin}\:\theta\:\frac{{d}\theta}{{dt}}=\mathrm{0} \\ $$$$\mathrm{2}{I}_{{p}} \frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\left({m}+{M}\right){ge}\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$${for}\:{small}\:\theta,\:\mathrm{sin}\:\theta\approx\theta \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\frac{\left({m}+{M}\right){eg}}{\mathrm{2}{I}_{{P}} }\theta=\mathrm{0}\:\:\:\:\rightarrow\:{d}.{e}.\:{of}\:{s}.{h}.{m}. \\ $$$$\omega=\sqrt{\frac{\left({m}+{M}\right){eg}}{\mathrm{2}{I}_{{P}} }}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left[\mathrm{4}\left({M}−{m}\right){L}+\mathrm{3}{MR}\right]{g}}{\mathrm{2}{m}\left(\frac{{L}^{\mathrm{2}} }{\mathrm{3}}+{R}^{\mathrm{2}} +{RL}\right)+\frac{\mathrm{13}{MR}^{\mathrm{2}} }{\mathrm{10}}}} \\ $$$${T}=\frac{\mathrm{2}\pi}{\omega}=\mathrm{4}\pi\sqrt{\frac{\mathrm{20}{m}\left(\frac{{L}^{\mathrm{2}} }{\mathrm{3}}+{R}^{\mathrm{2}} +{RL}\right)+\mathrm{13}{MR}^{\mathrm{2}} }{\mathrm{10}\left[\mathrm{4}\left({M}−{m}\right){L}+\mathrm{3}{MR}\right]{g}}} \\ $$

Commented by Tawa11 last updated on 20/Aug/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com