Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 175110 by nadovic last updated on 19/Aug/22

Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)

$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$

Commented by kaivan.ahmadi last updated on 19/Aug/22

 determinant (((1     1     1)),((a     b     c)),((a^2    b^2    c^2 ))) determinant (((1     1     1)),((a     b     c)),((a^2   b^2    c^2 )))=  (bc^2 +ca^2 +ab^2 )−(ba^2 +ac^2 +cb^2 )  =c(bc+a^2 −ac−b^2 )−ab(a−b)  =c(c(b−a)+(a−b)(a+b))−ab(a−b)  =(a−b)(−c^2 +ac+bc−ab)  =(a−b)(c(a−c)+b(c−a))  =(a−b)((c−a)(b−c))=  (a−b)(b−c)(c−a)  note that this is a Vandermonde  determinant.  In general case   determinant (((1      1    ...    1)),((a_(1   )  a_(2  ) ...     a_n )),((⋮   ⋮    ⋮)),((a_1 ^(n−1)   ...     a_n ^(n−1)  )))=Π_(1≤i<j≤n) (a_j −a_i )

$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}= \\ $$$$\left({bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} +{ab}^{\mathrm{2}} \right)−\left({ba}^{\mathrm{2}} +{ac}^{\mathrm{2}} +{cb}^{\mathrm{2}} \right) \\ $$$$={c}\left({bc}+{a}^{\mathrm{2}} −{ac}−{b}^{\mathrm{2}} \right)−{ab}\left({a}−{b}\right) \\ $$$$={c}\left({c}\left({b}−{a}\right)+\left({a}−{b}\right)\left({a}+{b}\right)\right)−{ab}\left({a}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left(−{c}^{\mathrm{2}} +{ac}+{bc}−{ab}\right) \\ $$$$=\left({a}−{b}\right)\left({c}\left({a}−{c}\right)+{b}\left({c}−{a}\right)\right) \\ $$$$=\left({a}−{b}\right)\left(\left({c}−{a}\right)\left({b}−{c}\right)\right)= \\ $$$$\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$${note}\:{that}\:{this}\:{is}\:{a}\:{Vandermonde} \\ $$$${determinant}. \\ $$$${In}\:{general}\:{case} \\ $$$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:...\:\:\:\:\mathrm{1}}\\{{a}_{\mathrm{1}\:\:\:} \:{a}_{\mathrm{2}\:\:} ...\:\:\:\:\:{a}_{{n}} }\\{\vdots\:\:\:\vdots\:\:\:\:\vdots}\\{{a}_{\mathrm{1}} ^{{n}−\mathrm{1}} \:\:...\:\:\:\:\:{a}_{{n}} ^{{n}−\mathrm{1}} \:}\end{vmatrix}=\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\prod}\left({a}_{{j}} −{a}_{{i}} \right) \\ $$

Commented by Tawa11 last updated on 19/Aug/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by puissant last updated on 21/Aug/22

Vandermonde method

$${Vandermonde}\:{method} \\ $$

Answered by Rasheed.Sindhi last updated on 19/Aug/22

Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)                       ∣ (/)Through properties(/) ∣       ^(−)   = determinant ((1,(    0),(   0)),(a,(b−a),(c−a)),(a^2 ,(b^2 −a^2 ),(c^2 −a^2 )))C2−C1_(C3−C1)     =(b−a)(c−a) determinant ((1,(    0),(   0)),(a,(    1),(   1)),(a^2 ,(b+a),(c+a)))  =(b−a)(c−a)∙1{1(c+a)−1(b+a)}  =(b−a)(c−a)(c−b)  =(a−b)(b−c)(c−a)

$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overline {\:\:\:\:\:\:\:\:\underline{\mid}\:\underline{\frac{}{}\boldsymbol{\mathrm{Through}}\:\boldsymbol{\mathrm{properties}}\frac{}{}\:\mid}\:\:\:\:\:\:\:} \\ $$$$=\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{{b}−{a}}&{{c}−{a}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }&{{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }\end{vmatrix}\underset{\mathrm{C3}−\mathrm{C1}} {\mathrm{C2}−\mathrm{C1}} \\ $$$$ \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{\:\:\:\:\mathrm{1}}&{\:\:\:\mathrm{1}}\\{{a}^{\mathrm{2}} }&{{b}+{a}}&{{c}+{a}}\end{vmatrix} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\centerdot\mathrm{1}\left\{\mathrm{1}\left({c}+{a}\right)−\mathrm{1}\left({b}+{a}\right)\right\} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\left({c}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$

Commented by puissant last updated on 21/Aug/22

Great

$${Great} \\ $$

Commented by Rasheed.Sindhi last updated on 21/Aug/22

Thanks sir!

$$\mathcal{T}{hanks}\:{sir}! \\ $$

Answered by Rajpurohith last updated on 10/Jun/23

Apply the operation C_1 →C_1 −C_2  and C_2 →C_2 −C_3   The determinant reduces to,   determinant (((   0                0            1)),((a−b         b−c        c)),((a^2 −b^2      b^2 −c^2      c^2 )))=(a−b)(b−c) determinant (((0             0      1)),((1             1      c)),((a+b    b+c   c^2 )))  This is by taking the common factors from C_1  & C_2   and operate C_1 →C_1 −C_2   =(a−b)(b−c) determinant (((0              0        1)),((0           1          c)),((a−c    b+c    c^2 )))  expanding along the first row,  =(a−b)(b−c)(c−a)

$${Apply}\:{the}\:{operation}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \:{and}\:{C}_{\mathrm{2}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} \\ $$$${The}\:{determinant}\:{reduces}\:{to}, \\ $$$$\begin{vmatrix}{\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{{a}−{b}\:\:\:\:\:\:\:\:\:{b}−{c}\:\:\:\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\:\:\:\:{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \:\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix}=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:{c}}\\{{a}+{b}\:\:\:\:{b}+{c}\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${This}\:{is}\:{by}\:{taking}\:{the}\:{common}\:{factors}\:{from}\:{C}_{\mathrm{1}} \:\&\:{C}_{\mathrm{2}} \\ $$$${and}\:{operate}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:{c}}\\{{a}−{c}\:\:\:\:{b}+{c}\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${expanding}\:{along}\:{the}\:{first}\:{row}, \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com