Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 175115 by mnjuly1970 last updated on 19/Aug/22

Answered by aleks041103 last updated on 19/Aug/22

n→∞  (√(1+(k/n^2 )))−1=(1+(k/(2n^2 )))−1=(k/(2n^2 ))  ⇒lim_(n→∞)  Σ_(k=1) ^n ((√(1+(k/n^2 )))−1)=lim_(n→∞) (1/(2n^2 ))Σ_(k=1) ^n k=  =lim_(n→∞) (1/(2n^2 )) ((n(n+1))/2)=(1/4)lim_(n→∞) (1+(1/n))=(1/4)

$${n}\rightarrow\infty \\ $$$$\sqrt{\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }}−\mathrm{1}=\left(\mathrm{1}+\frac{{k}}{\mathrm{2}{n}^{\mathrm{2}} }\right)−\mathrm{1}=\frac{{k}}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\sqrt{\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }}−\mathrm{1}\right)=\underset{{n}\rightarrow\infty} {{lim}}\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}= \\ $$$$=\underset{{n}\rightarrow\infty} {{lim}}\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}\rightarrow\infty} {{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 20/Aug/22

thanks alot sir

$${thanks}\:{alot}\:{sir} \\ $$

Answered by CElcedricjunior last updated on 20/Aug/22

lim_(x→∞) Σ_(k=1) ^n ((√(1+(k/n^2 ))) −1)=(1/4)  or ((1+a))^(1/n) =(1+a)^n ≈1+na avec a<<<1  =>(√(1+(k/n^2 ))) =(1+(k/n^2 ))^(1/2) ≈1+(k/(2n^2 ))  ≈lim_(x→∞) Σ_(k=1) ^n (k/(2n^2 ))=lim_(x→∞) (1/(2n))Σ_(k=1) ^n (k/n)  lim_(x→∞)  Σ_(k=1) ^n ((√(1+(k/n^2 ))) −1)≈(1/2)∫_0 ^1 xdx  ≈(1/2)[(x^2 /2)]_0 ^1   ⇔lim_(x→∞) Σ_(k=1) ^n ((√(1+(k/n^2 )))−1)≈(1/4)     ..........le celebre cedric junior.........

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\sqrt{\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} }}\:−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\boldsymbol{{or}}\:\sqrt[{\boldsymbol{{n}}}]{\mathrm{1}+\boldsymbol{{a}}}=\left(\mathrm{1}+\boldsymbol{{a}}\right)^{\boldsymbol{{n}}} \approx\mathrm{1}+\boldsymbol{{na}}\:\boldsymbol{{avec}}\:\boldsymbol{{a}}<<<\mathrm{1} \\ $$$$=>\sqrt{\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} }}\:=\left(\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \approx\mathrm{1}+\frac{\boldsymbol{{k}}}{\mathrm{2}\boldsymbol{{n}}^{\mathrm{2}} } \\ $$$$\approx\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\frac{\boldsymbol{{k}}}{\mathrm{2}\boldsymbol{{n}}^{\mathrm{2}} }=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{n}}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\sqrt{\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} }}\:−\mathrm{1}\right)\approx\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{xdx}} \\ $$$$\approx\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Leftrightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\sqrt{\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} }}−\mathrm{1}\right)\approx\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\: \\ $$$$..........{le}\:{celebre}\:{cedric}\:{junior}......... \\ $$

Commented by mnjuly1970 last updated on 20/Aug/22

mercey sir

$${mercey}\:{sir} \\ $$

Commented by Tawa11 last updated on 20/Aug/22

Great sirs

$$\mathrm{Great}\:\mathrm{sirs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com