Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 175175 by Shrinava last updated on 21/Aug/22

Answered by TheHoneyCat last updated on 23/Aug/22

Let me proove a slightly more general statement:  let x=(a/2) ≤ y=(c/2)   let t∈[0,1] : t.x+(1−t).y=b  and let us proove that  e^x +e^(−x) +e^y +e^(−y) −e^(tx+(1−t)y) −e^(−tx−(1−t)y)   −e^((1−t)x+ty) −e^(−(1−t)x+ty) ≥0    Notice that the problem written this way is  in fact equivalent to your question (exept I  got read of the π upper limit, it was unnecesarry)    Also note that the problem beeing perfectly  symetric in t by the transformation t (1−t)  so in fact we only need to verrify for t∈[0,(1/2)]    let′s go    if t=0 the problem is equivalent to:  e^x +e^(−x) +e^y +e^(−y) −e^y −e^(−y) −e^x −e^(−x) =0≥0  so t=0 works  Now let′s show that the function of t, wich  we want to say positive, is increasing from  now on:  its derivative will be:  −(x−y)e^(tx+(1−t)y) −(y−x)e^(−tx−(1−t)y)   −(y−x)e^((1−t)x+ty) −(x−y)e^(−(1−t)x−ty)     Considering only the first line  D_1 (t):= (y−x)(e^b −e^(−b) )  b≥0  so (e^b −e^(−b) )≥0  and y−x≥0  so D_1 ≥0    you can show the same thing for the second line  but everything is inverted (you′ll need to use  t≤1/2  but that′s not a problem as we said   earlier)    So the function is increasing on [0,1/2]  So it stays positive on the whole interval  We conclude the proof, as we said, by   symetry arround 1/2.  □            hope that answeres your question.

$$\mathrm{Let}\:\mathrm{me}\:\mathrm{proove}\:\mathrm{a}\:\mathrm{slightly}\:\mathrm{more}\:\mathrm{general}\:\mathrm{statement}: \\ $$$$\mathrm{let}\:{x}=\frac{{a}}{\mathrm{2}}\:\leqslant\:{y}=\frac{{c}}{\mathrm{2}}\: \\ $$$$\mathrm{let}\:{t}\in\left[\mathrm{0},\mathrm{1}\right]\::\:{t}.{x}+\left(\mathrm{1}−{t}\right).{y}={b} \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{us}\:\mathrm{proove}\:\mathrm{that} \\ $$$$\mathrm{e}^{{x}} +\mathrm{e}^{−{x}} +\mathrm{e}^{{y}} +\mathrm{e}^{−{y}} −\mathrm{e}^{{tx}+\left(\mathrm{1}−{t}\right){y}} −\mathrm{e}^{−{tx}−\left(\mathrm{1}−{t}\right){y}} \\ $$$$−\mathrm{e}^{\left(\mathrm{1}−\mathrm{t}\right){x}+{ty}} −\mathrm{e}^{−\left(\mathrm{1}−{t}\right){x}+{ty}} \geqslant\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Notice}\:\mathrm{that}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{written}\:\mathrm{this}\:\mathrm{way}\:\mathrm{is} \\ $$$$\mathrm{in}\:\mathrm{fact}\:\mathrm{equivalent}\:\mathrm{to}\:\mathrm{your}\:\mathrm{question}\:\left(\mathrm{exept}\:\mathrm{I}\right. \\ $$$$\left.\mathrm{got}\:\mathrm{read}\:\mathrm{of}\:\mathrm{the}\:\pi\:\mathrm{upper}\:\mathrm{limit},\:\mathrm{it}\:\mathrm{was}\:\mathrm{unnecesarry}\right) \\ $$$$ \\ $$$$\mathrm{Also}\:\mathrm{note}\:\mathrm{that}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{beeing}\:\mathrm{perfectly} \\ $$$$\mathrm{symetric}\:\mathrm{in}\:{t}\:\mathrm{by}\:\mathrm{the}\:\mathrm{transformation}\:{t} \left(\mathrm{1}−{t}\right) \\ $$$$\mathrm{so}\:\mathrm{in}\:\mathrm{fact}\:\mathrm{we}\:\mathrm{only}\:\mathrm{need}\:\mathrm{to}\:\mathrm{verrify}\:\mathrm{for}\:{t}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$ \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{go} \\ $$$$ \\ $$$$\mathrm{if}\:{t}=\mathrm{0}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{to}: \\ $$$$\mathrm{e}^{{x}} +\mathrm{e}^{−{x}} +\mathrm{e}^{{y}} +\mathrm{e}^{−{y}} −\mathrm{e}^{{y}} −\mathrm{e}^{−{y}} −\mathrm{e}^{{x}} −\mathrm{e}^{−{x}} =\mathrm{0}\geqslant\mathrm{0} \\ $$$$\mathrm{so}\:{t}=\mathrm{0}\:\mathrm{works} \\ $$$$\mathrm{Now}\:\mathrm{let}'\mathrm{s}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{of}\:{t},\:\mathrm{wich} \\ $$$$\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{say}\:\mathrm{positive},\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{from} \\ $$$$\mathrm{now}\:\mathrm{on}: \\ $$$$\mathrm{its}\:\mathrm{derivative}\:\mathrm{will}\:\mathrm{be}: \\ $$$$−\left({x}−{y}\right)\mathrm{e}^{{tx}+\left(\mathrm{1}−{t}\right){y}} −\left({y}−{x}\right)\mathrm{e}^{−{tx}−\left(\mathrm{1}−{t}\right){y}} \\ $$$$−\left({y}−{x}\right)\mathrm{e}^{\left(\mathrm{1}−{t}\right){x}+{ty}} −\left({x}−{y}\right)\mathrm{e}^{−\left(\mathrm{1}−{t}\right){x}−{ty}} \\ $$$$ \\ $$$$\mathrm{Considering}\:\mathrm{only}\:\mathrm{the}\:\mathrm{first}\:\mathrm{line} \\ $$$$\mathrm{D}_{\mathrm{1}} \left({t}\right):=\:\left({y}−{x}\right)\left(\mathrm{e}^{{b}} −\mathrm{e}^{−{b}} \right) \\ $$$${b}\geqslant\mathrm{0} \\ $$$$\mathrm{so}\:\left(\mathrm{e}^{{b}} −\mathrm{e}^{−{b}} \right)\geqslant\mathrm{0} \\ $$$$\mathrm{and}\:{y}−{x}\geqslant\mathrm{0} \\ $$$$\mathrm{so}\:\mathrm{D}_{\mathrm{1}} \geqslant\mathrm{0} \\ $$$$ \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{show}\:\mathrm{the}\:\mathrm{same}\:\mathrm{thing}\:\mathrm{for}\:\mathrm{the}\:\mathrm{second}\:\mathrm{line} \\ $$$$\mathrm{but}\:\mathrm{everything}\:\mathrm{is}\:\mathrm{inverted}\:\left({you}'{ll}\:{need}\:{to}\:{use}\right. \\ $$$${t}\leqslant\mathrm{1}/\mathrm{2}\:\:{but}\:{that}'{s}\:{not}\:{a}\:{problem}\:{as}\:{we}\:{said}\: \\ $$$$\left.{earlier}\right) \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}/\mathrm{2}\right] \\ $$$$\mathrm{So}\:\mathrm{it}\:\mathrm{stays}\:\mathrm{positive}\:\mathrm{on}\:\mathrm{the}\:\mathrm{whole}\:\mathrm{interval} \\ $$$$\mathrm{We}\:\mathrm{conclude}\:\mathrm{the}\:\mathrm{proof},\:\mathrm{as}\:\mathrm{we}\:\mathrm{said},\:\mathrm{by}\: \\ $$$$\mathrm{symetry}\:\mathrm{arround}\:\mathrm{1}/\mathrm{2}. \\ $$$$\Box \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${hope}\:{that}\:{answeres}\:{your}\:{question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com