All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 175175 by Shrinava last updated on 21/Aug/22
Answered by TheHoneyCat last updated on 23/Aug/22
Letmeprooveaslightlymoregeneralstatement:letx=a2⩽y=c2lett∈[0,1]:t.x+(1−t).y=bandletusproovethatex+e−x+ey+e−y−etx+(1−t)y−e−tx−(1−t)y−e(1−t)x+ty−e−(1−t)x+ty⩾0Noticethattheproblemwrittenthiswayisinfactequivalenttoyourquestion(exeptIgotreadoftheπupperlimit,itwasunnecesarry)Alsonotethattheproblembeeingperfectlysymetricintbythetransformationt(1−t)soinfactweonlyneedtoverrifyfort∈[0,12]let′sgoift=0theproblemisequivalentto:ex+e−x+ey+e−y−ey−e−y−ex−e−x=0⩾0sot=0worksNowlet′sshowthatthefunctionoft,wichwewanttosaypositive,isincreasingfromnowon:itsderivativewillbe:−(x−y)etx+(1−t)y−(y−x)e−tx−(1−t)y−(y−x)e(1−t)x+ty−(x−y)e−(1−t)x−tyConsideringonlythefirstlineD1(t):=(y−x)(eb−e−b)b⩾0so(eb−e−b)⩾0andy−x⩾0soD1⩾0youcanshowthesamethingforthesecondlinebuteverythingisinverted(you′llneedtouset⩽1/2butthat′snotaproblemaswesaidearlier)Sothefunctionisincreasingon[0,1/2]SoitstayspositiveonthewholeintervalWeconcludetheproof,aswesaid,bysymetryarround1/2.◻hopethatansweresyourquestion.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com