Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 175244 by infinityaction last updated on 24/Aug/22

 prove that   ∫_0 ^a ∫_0 ^(√(a^2 −x^2 )) ((dx dy)/((1+e^y )(√(a^2 −x^2 −y^2 )))) = (π/2)log ((2e^a )/(1+e^a ))

$$\:{prove}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{{a}} \int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \frac{{dx}\:{dy}}{\left(\mathrm{1}+{e}^{{y}} \right)\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }}\:=\:\frac{\pi}{\mathrm{2}}\mathrm{log}\:\frac{\mathrm{2}{e}^{{a}} }{\mathrm{1}+{e}^{{a}} } \\ $$

Answered by Ar Brandon last updated on 24/Aug/22

I=∫_0 ^a ∫_0 ^(√(a^2 −y^2 )) ((dxdy)/((1+e^y )(√(a^2 −x^2 −y^2 ))))    =∫_0 ^a (1/(1+e^y ))∫_0 ^(√(a^2 −y^2 )) (dx/( (√((a^2 −y^2 )−x^2 ))))dy    =∫_0 ^a (1/(1+e^y ))[arcsin((x/( (√(a^2 −y^2 )))))]_0 ^(√(a^2 −y^2 )) dy    =(π/2)∫_0 ^a (1/(1+e^y ))dy=(π/2)∫_0 ^a (e^(−y) /(e^(−y) +1))dy    =−(π/2)[ln(e^(−y) +1)]_0 ^a =(π/2)(ln2−ln(e^(−a) +1))    =(π/2)ln((2/(e^(−a) +1)))=(π/2)ln(((2e^a )/(1+e^a )))

$${I}=\int_{\mathrm{0}} ^{{a}} \int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \frac{{dxd}\mathrm{y}}{\left(\mathrm{1}+{e}^{\mathrm{y}} \right)\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \\ $$$$\:\:=\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }\int_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} \frac{{dx}}{\:\sqrt{\left({a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)−{x}^{\mathrm{2}} }}{d}\mathrm{y} \\ $$$$\:\:=\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }\left[\mathrm{arcsin}\left(\frac{{x}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}\right)\right]_{\mathrm{0}} ^{\sqrt{{a}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }} {d}\mathrm{y} \\ $$$$\:\:=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{{a}} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{y}} }{d}\mathrm{y}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{{a}} \frac{{e}^{−\mathrm{y}} }{{e}^{−\mathrm{y}} +\mathrm{1}}{d}\mathrm{y} \\ $$$$\:\:=−\frac{\pi}{\mathrm{2}}\left[\mathrm{ln}\left({e}^{−\mathrm{y}} +\mathrm{1}\right)\right]_{\mathrm{0}} ^{{a}} =\frac{\pi}{\mathrm{2}}\left(\mathrm{ln2}−\mathrm{ln}\left({e}^{−{a}} +\mathrm{1}\right)\right) \\ $$$$\:\:=\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{2}}{{e}^{−{a}} +\mathrm{1}}\right)=\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{2}{e}^{{a}} }{\mathrm{1}+{e}^{{a}} }\right) \\ $$

Commented by infinityaction last updated on 24/Aug/22

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com