Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 175247 by rexford last updated on 24/Aug/22

Answered by Ar Brandon last updated on 24/Aug/22

I=∫_0 ^(π/2) sin^2 4ϑcos^5 4ϑdϑ    =∫_0 ^(π/2) sin^2 4ϑ(1−sin^2 4ϑ)^2 cos4ϑdϑ    =∫_0 ^(π/2) (sin^2 4ϑ−2sin^4 4ϑ+sin^6 4ϑ)cos4ϑdϑ    =(1/4)[((sin^3 4ϑ)/3)−((2sin^5 4ϑ)/5)+((sin^7 4ϑ)/7)]_0 ^(π/2) =0

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \mathrm{4}\vartheta\mathrm{cos}^{\mathrm{5}} \mathrm{4}\vartheta{d}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \mathrm{4}\vartheta\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{4}\vartheta\right)^{\mathrm{2}} \mathrm{cos4}\vartheta{d}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{sin}^{\mathrm{2}} \mathrm{4}\vartheta−\mathrm{2sin}^{\mathrm{4}} \mathrm{4}\vartheta+\mathrm{sin}^{\mathrm{6}} \mathrm{4}\vartheta\right)\mathrm{cos4}\vartheta{d}\vartheta \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{4}\vartheta}{\mathrm{3}}−\frac{\mathrm{2sin}^{\mathrm{5}} \mathrm{4}\vartheta}{\mathrm{5}}+\frac{\mathrm{sin}^{\mathrm{7}} \mathrm{4}\vartheta}{\mathrm{7}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{0} \\ $$

Commented by rexford last updated on 25/Aug/22

But the answer is not zero when typed on calculator

$${But}\:{the}\:{answer}\:{is}\:{not}\:{zero}\:{when}\:{typed}\:{on}\:{calculator} \\ $$

Commented by Ar Brandon last updated on 25/Aug/22

Then maybe you should sell the calculator   and have a picnic with the money. Haha !

$$\mathrm{Then}\:\mathrm{maybe}\:\mathrm{you}\:\mathrm{should}\:\mathrm{sell}\:\mathrm{the}\:\mathrm{calculator} \\ $$$$\:\mathrm{and}\:\mathrm{have}\:\mathrm{a}\:\mathrm{picnic}\:\mathrm{with}\:\mathrm{the}\:\mathrm{money}.\:\mathrm{Haha}\:! \\ $$

Commented by rexford last updated on 25/Aug/22

i see...lol

$${i}\:{see}...{lol} \\ $$

Commented by Ar Brandon last updated on 25/Aug/22

What your calculator gives you is probably  the sum of areas bounded by f(x) and the  x-axis which is  [((sin^3 4ϑ)/3)−((2sin^5 4ϑ)/5)+((sin^7 4ϑ)/7)]_0 ^(π/8)        =(1/3)−(1/5)+(1/7)=((29)/(105)) square units

$$\mathrm{What}\:\mathrm{your}\:\mathrm{calculator}\:\mathrm{gives}\:\mathrm{you}\:\mathrm{is}\:\mathrm{probably} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{areas}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{f}\left({x}\right)\:\mathrm{and}\:\mathrm{the} \\ $$$${x}-\mathrm{axis}\:\mathrm{which}\:\mathrm{is} \\ $$$$\left[\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{4}\vartheta}{\mathrm{3}}−\frac{\mathrm{2sin}^{\mathrm{5}} \mathrm{4}\vartheta}{\mathrm{5}}+\frac{\mathrm{sin}^{\mathrm{7}} \mathrm{4}\vartheta}{\mathrm{7}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{8}}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}=\frac{\mathrm{29}}{\mathrm{105}}\:\mathrm{square}\:\mathrm{units} \\ $$

Commented by Ar Brandon last updated on 25/Aug/22

Commented by rexford last updated on 25/Aug/22

I get it,Boss  ...but is there any approach   to relate the integral with the   beta integral i.e 2∫_0 ^(Π/2) sin^(2m−1) θcos^(2n+1) θdθ

$${I}\:{get}\:{it},{Boss} \\ $$$$...{but}\:{is}\:{there}\:{any}\:{approach} \\ $$$$\:{to}\:{relate}\:{the}\:{integral}\:{with}\:{the}\: \\ $$$${beta}\:{integral}\:{i}.{e}\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {sin}^{\mathrm{2}{m}−\mathrm{1}} \theta{cos}^{\mathrm{2}{n}+\mathrm{1}} \theta{d}\theta \\ $$

Commented by Ar Brandon last updated on 25/Aug/22

Yah sure !  I=∫_0 ^(π/2) sin^2 4ϑcos^5 4ϑdϑ=(1/4)∫_0 ^(2π) sin^2 tcos^5 tdt  4I=∫_0 ^(π/2) sin^2 tcos^5 tdt_(A) +∫_(π/2) ^π sin^2 tcos^5 tdt_(B) +∫_π ^((3π)/2) sin^2 tcos^5 tdt_(C) +∫_((3π)/2) ^(2π) sin^2 tcos^5 tdt_(D)   For B let t=π−u ⇒B=∫_0 ^(π/2) sin^2 (π−u)cos^5 (π−u)du  ⇒B=−∫_0 ^(π/2) sin^2 ucos^5 udu=−A since sin(π−u)=sinu, cos(π−u)=−cosu  Similarly for C we let t=((3π)/2)−u and we have  −∫_0 ^(π/2) cos^2 usin^5 udu, since sin(((3π)/2)−u)=−cosu and cos(((3π)/2)−u)=−sinu  which is equal to −∫_0 ^(π/2) sin^2 ucos^5 udu since ∫_0 ^(π/2) sin^m ucos^n udu=∫_0 ^(π/2) cos^m usin^n udu  And for D when we let t=2π−t we have ∫_0 ^(π/2) sin^2 ucos^5 udu  So   I=∫_0 ^(π/2) sin^2 tcos^5 tdt−∫_0 ^(π/2) sin^2 ucos^5 udu−∫_0 ^(π/2) sin^2 ucos^5 udu+∫_0 ^(π/2) sin^2 ucos^5 udu  Now you can apply your beta function since we now have the usual limits  [0, (π/2)]. Although that will be superfluous since we can already notice   all the partial integrals cancel out themselves  A−A−A+A=0

$$\mathrm{Yah}\:\mathrm{sure}\:! \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \mathrm{4}\vartheta\mathrm{cos}^{\mathrm{5}} \mathrm{4}\vartheta{d}\vartheta=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt} \\ $$$$\mathrm{4}{I}=\underset{{A}} {\underbrace{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt}}}+\underset{{B}} {\underbrace{\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt}}}+\underset{{C}} {\underbrace{\int_{\pi} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt}}}+\underset{{D}} {\underbrace{\int_{\frac{\mathrm{3}\pi}{\mathrm{2}}} ^{\mathrm{2}\pi} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt}}} \\ $$$$\mathrm{For}\:{B}\:\mathrm{let}\:{t}=\pi−{u}\:\Rightarrow{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \left(\pi−{u}\right)\mathrm{cos}^{\mathrm{5}} \left(\pi−{u}\right){du} \\ $$$$\Rightarrow{B}=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu}=−{A}\:\mathrm{since}\:\mathrm{sin}\left(\pi−{u}\right)=\mathrm{sin}{u},\:\mathrm{cos}\left(\pi−{u}\right)=−\mathrm{cos}{u} \\ $$$$\mathrm{Similarly}\:\mathrm{for}\:{C}\:\mathrm{we}\:\mathrm{let}\:{t}=\frac{\mathrm{3}\pi}{\mathrm{2}}−{u}\:\mathrm{and}\:\mathrm{we}\:\mathrm{have} \\ $$$$−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} {u}\mathrm{sin}^{\mathrm{5}} {udu},\:\mathrm{since}\:\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}−{u}\right)=−\mathrm{cos}{u}\:\mathrm{and}\:\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}−{u}\right)=−\mathrm{sin}{u} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu}\:\mathrm{since}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{{m}} {u}\mathrm{cos}^{{n}} {udu}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{{m}} {u}\mathrm{sin}^{{n}} {udu} \\ $$$$\mathrm{And}\:\mathrm{for}\:{D}\:\mathrm{when}\:\mathrm{we}\:\mathrm{let}\:{t}=\mathrm{2}\pi−{t}\:\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu} \\ $$$$\mathrm{So}\: \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {t}\mathrm{cos}^{\mathrm{5}} {tdt}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} {u}\mathrm{cos}^{\mathrm{5}} {udu} \\ $$$$\mathrm{Now}\:\mathrm{you}\:\mathrm{can}\:\mathrm{apply}\:\mathrm{your}\:\mathrm{beta}\:\mathrm{function}\:\mathrm{since}\:\mathrm{we}\:\mathrm{now}\:\mathrm{have}\:\mathrm{the}\:\mathrm{usual}\:\mathrm{limits} \\ $$$$\left[\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right].\:\mathrm{Although}\:\mathrm{that}\:\mathrm{will}\:\mathrm{be}\:\mathrm{superfluous}\:\mathrm{since}\:\mathrm{we}\:\mathrm{can}\:\mathrm{already}\:\mathrm{notice} \\ $$$$\:\mathrm{all}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{integrals}\:\mathrm{cancel}\:\mathrm{out}\:\mathrm{themselves} \\ $$$${A}−{A}−{A}+{A}=\mathrm{0} \\ $$

Answered by Mathspace last updated on 25/Aug/22

Ψ=∫_0 ^(π/2) sin^2 (4θ)cos^5 (4θ)dθ  =_(4θ=t)    (1/4)∫_0 ^(2π) sin^2 t cos^5 t dt  ∫_0 ^(2π) sin^2 t cos^5 t dt  =∫_0 ^(π/2) (...)dt +∫_(π/2) ^π (...)dt+∫_π ^((3π)/2) (...)dt  +∫_((3π)/2) ^(2π) (...)dt  ∫_(π/2) ^π sin^2 t cos^5 t dt  =_(t=(π/2)+x)   −∫_0 ^(π/2) cos^2 x sin^5 xdx  ∫_π ^((3π)/2) sin^2 t cos^5 t dt  =_(t=π+x)  − ∫_0 ^(π/2) sin^2 x cos^5 xdx  ∫_((3π)/2) ^(2π) sin^2 t cos^5 t dt  =_(t=((3π)/2)+x)    ∫_0 ^(π/2)  cos^2 x sin^5 xdx ⇒  4Ψ=∫_0 ^(π/2) sin^2 x cos^5 xdx−∫_0 ^(π/2) cos^2 x sin^5 xdx  −∫_0 ^(π/2) sin^2 x cos^5 xdx+∫_0 ^(π/2) cos^2 x sin^5 xdx  =0 ⇒Ψ=0

$$\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left(\mathrm{4}\theta\right){cos}^{\mathrm{5}} \left(\mathrm{4}\theta\right){d}\theta \\ $$$$=_{\mathrm{4}\theta={t}} \:\:\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}^{\mathrm{2}} {t}\:{cos}^{\mathrm{5}} {t}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}^{\mathrm{2}} {t}\:{cos}^{\mathrm{5}} {t}\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(...\right){dt}\:+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \left(...\right){dt}+\int_{\pi} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \left(...\right){dt} \\ $$$$+\int_{\frac{\mathrm{3}\pi}{\mathrm{2}}} ^{\mathrm{2}\pi} \left(...\right){dt} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} {sin}^{\mathrm{2}} {t}\:{cos}^{\mathrm{5}} {t}\:{dt} \\ $$$$=_{{t}=\frac{\pi}{\mathrm{2}}+{x}} \:\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{5}} {xdx} \\ $$$$\int_{\pi} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {t}\:{cos}^{\mathrm{5}} {t}\:{dt} \\ $$$$=_{{t}=\pi+{x}} \:−\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{5}} {xdx} \\ $$$$\int_{\frac{\mathrm{3}\pi}{\mathrm{2}}} ^{\mathrm{2}\pi} {sin}^{\mathrm{2}} {t}\:{cos}^{\mathrm{5}} {t}\:{dt} \\ $$$$=_{{t}=\frac{\mathrm{3}\pi}{\mathrm{2}}+{x}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{5}} {xdx}\:\Rightarrow \\ $$$$\mathrm{4}\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{5}} {xdx}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{5}} {xdx} \\ $$$$−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {x}\:{cos}^{\mathrm{5}} {xdx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{5}} {xdx} \\ $$$$=\mathrm{0}\:\Rightarrow\Psi=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com