Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 175351 by cortano1 last updated on 28/Aug/22

  ∫_0 ^(π/2)  ((sin^3 x)/(sin x+cos x)) dx =?

π/20sin3xsinx+cosxdx=?

Answered by som(math1967) last updated on 28/Aug/22

I=∫_0 ^(π/2) ((sin^3 ((π/2)+0−x)dx)/(sin((π/2)+0−x)+cos((π/2)+0−x)))  =∫_0 ^(π/2) ((cos^3 xdx)/(cosx+sinx))  2I=∫_0 ^(π/2) ((sin^3 x+cos^3 x)/(sinx+cosx))dx  2I=∫_0 ^(π/2) (sin^2 x−sinxcox+cos^2 x)dx  2I=∫_0 ^(π/2) dx−(1/2)∫_0 ^(π/2) sin2xdx  2I=[x+((cos2x)/4)]_0 ^(π/2)   2I=((π/2)−(1/4))−(0+(1/4))  I=(π/4) −(1/4)

I=0π2sin3(π2+0x)dxsin(π2+0x)+cos(π2+0x)=0π2cos3xdxcosx+sinx2I=0π2sin3x+cos3xsinx+cosxdx2I=0π2(sin2xsinxcox+cos2x)dx2I=0π2dx120π2sin2xdx2I=[x+cos2x4]0π22I=(π214)(0+14)I=π414

Commented by cortano1 last updated on 28/Aug/22

by King Formula

byKingFormula

Commented by som(math1967) last updated on 28/Aug/22

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com