Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 175411 by Rasheed.Sindhi last updated on 29/Aug/22

  7+67+667+6667+.....(n terms)=?

7+67+667+6667+.....(nterms)=?

Commented by infinityaction last updated on 30/Aug/22

(6+1)+(66+1)+(666+1)+...(n terms)  6+66+...+n terms + 1+1+1...n terms  6[1+11+111+..+1(n terms)]+n      (1)      S_n =1+11+111+...+1111...11  9S_n =9+99+999+...+999...99    =(10−1)+(100−1)+(1000−1)+... n terms       =(10+100+1000+...n terms)−n       =((10(10^n −1))/(10−1))−n           =((10(10^n −1)−9n)/9)      S_n =((10^(n+1) −9n−10)/(81))         then      by  eq^n (1)       6[((10^(n+1) −9n−10)/(81))]+n       (2/(27))[10^(n+1) −9n−10]+n        ((2×10^(n+1) −18n+27n−20)/(27))         ((2×10^(n+1) +9n−20)/(27))

(6+1)+(66+1)+(666+1)+...(nterms)6+66+...+nterms+1+1+1...nterms6[1+11+111+..+1(nterms)]+n(1)Sn=1+11+111+...+1111...119Sn=9+99+999+...+999...99=(101)+(1001)+(10001)+...nterms=(10+100+1000+...nterms)n=10(10n1)101n=10(10n1)9n9Sn=10n+19n1081thenbyeqn(1)6[10n+19n1081]+n227[10n+19n10]+n2×10n+118n+27n20272×10n+1+9n2027

Commented by Rasheed.Sindhi last updated on 30/Aug/22

Thanks to all sirs for their good &  unique approaches!

Thankstoallsirsfortheirgood&uniqueapproaches!

Commented by peter frank last updated on 31/Aug/22

thanks

thanks

Answered by Ar Brandon last updated on 29/Aug/22

u_n =7+67+667+6667+...  Δu_n =60+600+6000, r=10  ⇒u_n =a×10^(n−1) +a_0   u_1 =7=a+a_0   u_2 =67=10a+a_0  ⇒ { ((a+a_0 =7)),((10a+a_0 =67)) :}  ⇒a=((60)/9) , a_0 =(1/3)  ⇒u_n =((20)/3)×10^(n−1) +(1/3)  Σu_n =((20)/3)(((10^n −1)/9))+(n/3)

un=7+67+667+6667+...Δun=60+600+6000,r=10un=a×10n1+a0u1=7=a+a0u2=67=10a+a0{a+a0=710a+a0=67a=609,a0=13un=203×10n1+13Σun=203(10n19)+n3

Answered by Rasheed.Sindhi last updated on 30/Aug/22

S=7+67+667+6667+.....(n terms)  S=(10−3)+(100−33)+(1000−333)+...(n terms)  ={10+100+100+...(n terms)}_(S1)                 −{3+33+333+...(n terms)}  =S_1 −(3/9)(9+99+999+...(n terms)  =S_1 −(1/3)(10−1+100−1+1000−1+...(n terms)  =S_1 −(1/3){10+100+1000+...(n terms)−n}  =S_1 −(1/3){S_1 −n}  =(2/3)S_1 +(1/3)n  ∵ S_1 =((10(10^n −1))/(10−1))=((10^(n+1) −10)/9)  ∴S_n =(2/3)(((10^(n+1) −10)/9))+(1/3)n       =((2∙10^(n+1) −20)/(27))+(n/3)      =((2∙10^(n+1) +9n−20)/(27))

S=7+67+667+6667+.....(nterms)S=(103)+(10033)+(1000333)+...(nterms)={10+100+100+...(nterms)}S1{3+33+333+...(nterms)}=S139(9+99+999+...(nterms)=S113(101+1001+10001+...(nterms)=S113{10+100+1000+...(nterms)n}=S113{S1n}=23S1+13nS1=10(10n1)101=10n+1109Sn=23(10n+1109)+13n=210n+12027+n3=210n+1+9n2027

Commented by Tawa11 last updated on 30/Aug/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com