Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 175766 by BaliramKumar last updated on 06/Sep/22

Number of  even composite factors of 2520?

$${Number}\:{of}\:\:{even}\:{composite}\:{factors}\:{of}\:\mathrm{2520}? \\ $$

Commented by mr W last updated on 06/Sep/22

2520=2^3 ×3^2 ×5×7  for even factors 2 must be contained  at least one time, 2520 must be excluded.  ⇒3×3×2×2−1=35

$$\mathrm{2520}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{5}×\mathrm{7} \\ $$$${for}\:{even}\:{factors}\:\mathrm{2}\:{must}\:{be}\:{contained} \\ $$$${at}\:{least}\:{one}\:{time},\:\mathrm{2520}\:{must}\:{be}\:{excluded}. \\ $$$$\Rightarrow\mathrm{3}×\mathrm{3}×\mathrm{2}×\mathrm{2}−\mathrm{1}=\mathrm{35} \\ $$

Answered by aleks041103 last updated on 06/Sep/22

let s(n) be the number of composite factors  of n.  let n=p_1 ^r_1  p_2 ^r_2  ...p_k ^r_k  , where p_(1,2,..,k)  are primes  and r_(1,2,...,k) ∈N={1,2,...}  any factor f of n must be of the form:  f=p_1 ^t_1  p_2 ^t_2  ...p_k ^t_k  , where 0≤t_i ≤r_i .  ⇒ for t_i  we have r_i +1 possibilities.  ⇒#factors of n=Π_(i=1) ^k (1+r_i )=σ(n)  out of those σ(n) factors the noncomposite  are 1,p_1 ,p_2 ,...,p_k , i.e. k+1.  ⇒s(n)=σ(n)−k−1  ⇒s(n)=[Π_(i=1) ^k (1+r_i )]−k−1  Now, the composite factors are 2 types  devisible by p_q  and not devisible by p_q .  The ones not devisible by p_q  are all the   composite factors of  (n/p_q ^r_q  )  ⇒The answer is:  s(n)−s((n/p_q ^r_q  ))= { (([r_q Π_(i=1,i≠q) ^k (1+r_i )]−1 , p_q ∣n)),(([r_q Π_(i=1,i≠q) ^k (1+r_i )] , p_q ∤n)) :}  in our case:  2520=2.5.2.2.7.9=2^3 .3^2 .5.7  ⇒ ans.=3(2+1)(1+1)(1+1)−1=  =3.3.2.2−1=35  ⇒Ans. 35

$${let}\:{s}\left({n}\right)\:{be}\:{the}\:{number}\:{of}\:{composite}\:{factors} \\ $$$${of}\:{n}. \\ $$$${let}\:{n}={p}_{\mathrm{1}} ^{{r}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{r}_{\mathrm{2}} } ...{p}_{{k}} ^{{r}_{{k}} } ,\:{where}\:{p}_{\mathrm{1},\mathrm{2},..,{k}} \:{are}\:{primes} \\ $$$${and}\:{r}_{\mathrm{1},\mathrm{2},...,{k}} \in\mathbb{N}=\left\{\mathrm{1},\mathrm{2},...\right\} \\ $$$${any}\:{factor}\:{f}\:{of}\:{n}\:{must}\:{be}\:{of}\:{the}\:{form}: \\ $$$${f}={p}_{\mathrm{1}} ^{{t}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{t}_{\mathrm{2}} } ...{p}_{{k}} ^{{t}_{{k}} } ,\:{where}\:\mathrm{0}\leqslant{t}_{{i}} \leqslant{r}_{{i}} . \\ $$$$\Rightarrow\:{for}\:{t}_{{i}} \:{we}\:{have}\:{r}_{{i}} +\mathrm{1}\:{possibilities}. \\ $$$$\Rightarrow#{factors}\:{of}\:{n}=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{r}_{{i}} \right)=\sigma\left({n}\right) \\ $$$${out}\:{of}\:{those}\:\sigma\left({n}\right)\:{factors}\:{the}\:{noncomposite} \\ $$$${are}\:\mathrm{1},{p}_{\mathrm{1}} ,{p}_{\mathrm{2}} ,...,{p}_{{k}} ,\:{i}.{e}.\:{k}+\mathrm{1}. \\ $$$$\Rightarrow{s}\left({n}\right)=\sigma\left({n}\right)−{k}−\mathrm{1} \\ $$$$\Rightarrow{s}\left({n}\right)=\left[\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{r}_{{i}} \right)\right]−{k}−\mathrm{1} \\ $$$${Now},\:{the}\:{composite}\:{factors}\:{are}\:\mathrm{2}\:{types} \\ $$$${devisible}\:{by}\:{p}_{{q}} \:{and}\:{not}\:{devisible}\:{by}\:{p}_{{q}} . \\ $$$${The}\:{ones}\:{not}\:{devisible}\:{by}\:{p}_{{q}} \:{are}\:{all}\:{the}\: \\ $$$${composite}\:{factors}\:{of}\:\:\frac{{n}}{{p}_{{q}} ^{{r}_{{q}} } } \\ $$$$\Rightarrow{The}\:{answer}\:{is}: \\ $$$${s}\left({n}\right)−{s}\left(\frac{{n}}{{p}_{{q}} ^{{r}_{{q}} } }\right)=\begin{cases}{\left[{r}_{{q}} \underset{{i}=\mathrm{1},{i}\neq{q}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{r}_{{i}} \right)\right]−\mathrm{1}\:,\:{p}_{{q}} \mid{n}}\\{\left[{r}_{{q}} \underset{{i}=\mathrm{1},{i}\neq{q}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{r}_{{i}} \right)\right]\:,\:{p}_{{q}} \nmid{n}}\end{cases} \\ $$$${in}\:{our}\:{case}: \\ $$$$\mathrm{2520}=\mathrm{2}.\mathrm{5}.\mathrm{2}.\mathrm{2}.\mathrm{7}.\mathrm{9}=\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{2}} .\mathrm{5}.\mathrm{7} \\ $$$$\Rightarrow\:{ans}.=\mathrm{3}\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)−\mathrm{1}= \\ $$$$=\mathrm{3}.\mathrm{3}.\mathrm{2}.\mathrm{2}−\mathrm{1}=\mathrm{35} \\ $$$$\Rightarrow{Ans}.\:\mathrm{35} \\ $$

Commented by aleks041103 last updated on 06/Sep/22

Commented by mr W last updated on 06/Sep/22

2 is valid, 2520 invalid?

$$\mathrm{2}\:{is}\:{valid},\:\mathrm{2520}\:{invalid}? \\ $$

Commented by BaliramKumar last updated on 06/Sep/22

thanks

$${thanks} \\ $$

Commented by aleks041103 last updated on 07/Sep/22

Well 2 is even but not composite, while  2520 is both even and composite and also  is a factor of itself.  So 2 doesn′t count, while 2520 counts.

$${Well}\:\mathrm{2}\:{is}\:{even}\:{but}\:{not}\:{composite},\:{while} \\ $$$$\mathrm{2520}\:{is}\:{both}\:{even}\:{and}\:{composite}\:{and}\:{also} \\ $$$${is}\:{a}\:{factor}\:{of}\:{itself}. \\ $$$${So}\:\mathrm{2}\:{doesn}'{t}\:{count},\:{while}\:\mathrm{2520}\:{counts}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com