All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 175806 by Ml last updated on 07/Sep/22
Answered by cortano1 last updated on 07/Sep/22
xx+1−1=x(x+1+1)x=x+1+1xletx=tanu⇒x=tan2(u){x=1⇒u=π4x=3⇒u=π3I3=∫π/3π/4tan2(u)+1+1tanu(2tanusec2u)duI3=∫π/3π/4(secu+1)(2sec2u)duI3=2∫π/3π/4sec3udu+2[tanu]π/4π/3I3=2(3−1)+2∫π/3π/4secud(tanu)Ω=∫secud(tanu)=secutanu−∫secu(sec2u−1)duΩ=secutanu−Ω+∫secuduΩ=12secutanu+ln∣secu+tanu∣2+cI3=23−2+2.12[secutanu+ln∣secu+tanu∣]π/4π/3I3=23−2+23+ln(2+3)−2−ln(1+2)I3=43−2−2+ln(2+32+1)I3=43−2−2+ln((2+3)(2−1))I3=43−2−2+ln(22−2+6−3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com