Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 175806 by Ml last updated on 07/Sep/22

Answered by cortano1 last updated on 07/Sep/22

 ((√x)/( (√(x+1))−1)) = (((√x) ((√(x+1)) +1))/x)   = (((√(x+1)) +1)/( (√x)))    let (√x) =tan u⇒x=tan^2 (u)    { ((x=1⇒u=(π/4))),((x=3⇒u=(π/3))) :}   I_3 = ∫_(π/4) ^(π/3)  (((√(tan^2 (u)+1)) +1)/(tan u)) (2 tan u sec^2 u)du   I_3 =∫_(π/4) ^(π/3)  (sec u+1)(2sec^2 u)du  I_3 =2∫_(π/4) ^(π/3) sec^3 u du+2[ tan u ]_(π/4) ^(π/3)    I_3 =2((√3)−1)+2∫_(π/4) ^(π/3) sec u d(tan u)   Ω = ∫sec u d(tan u)=sec u tan u−∫sec u(sec^2 u−1)du  Ω=sec u tan u−Ω+∫sec u du  Ω=(1/2)sec u tan u+((ln ∣sec u+tan u∣)/2) + c  I_3 =2(√3)−2 +2.(1/2) [ sec u tan u+ln ∣sec u+tan u∣ ]_(π/4) ^(π/3)   I_3 =2(√3)−2+2(√3) +ln (2+(√3))−(√2)−ln (1+(√2))  I_3 =4(√3)−2−(√2)+ln (((2+(√3))/( (√2)+1)))  I_3 =4(√3)−2−(√2)+ln ((2+(√3))((√2)−1))  I_3 =4(√3)−2−(√2) +ln (2(√2)−2+(√6)−(√3))

xx+11=x(x+1+1)x=x+1+1xletx=tanux=tan2(u){x=1u=π4x=3u=π3I3=π/3π/4tan2(u)+1+1tanu(2tanusec2u)duI3=π/3π/4(secu+1)(2sec2u)duI3=2π/3π/4sec3udu+2[tanu]π/4π/3I3=2(31)+2π/3π/4secud(tanu)Ω=secud(tanu)=secutanusecu(sec2u1)duΩ=secutanuΩ+secuduΩ=12secutanu+lnsecu+tanu2+cI3=232+2.12[secutanu+lnsecu+tanu]π/4π/3I3=232+23+ln(2+3)2ln(1+2)I3=4322+ln(2+32+1)I3=4322+ln((2+3)(21))I3=4322+ln(222+63)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com