Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 175815 by Shrinava last updated on 07/Sep/22

If   n≥1         a and b are positive real numbers  Then prove that:  ((a^n   +  b^n )/(a  +  b))  ≥  ((a^(n−1)   +  b^(n−1) )/2)

$$\mathrm{If}\:\:\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \:\:+\:\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} }{\mathrm{a}\:\:+\:\:\mathrm{b}}\:\:\geqslant\:\:\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \:\:+\:\:\mathrm{b}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} }{\mathrm{2}} \\ $$

Answered by mahdipoor last updated on 07/Sep/22

⇔ 2a^n +2b^n ≥a^n +b^n +ab^(n−1) +ba^(n−1)   ⇔ a^n +b^n ≥ab^(n−1) +ba^(n−1)    ⇔a^(n−1) (a−b)≥b^(n−1) (a−b)  ⇔ { ((⇔^(a−b≥0)   a^(n−1) ≥b^(n−1)  ⇔ a≥b)),((⇔^(a−b≤0)   a^(n−1) ≤b^(n−1)  ⇔ a≤b)) :}

$$\Leftrightarrow\:\mathrm{2}{a}^{{n}} +\mathrm{2}{b}^{{n}} \geqslant{a}^{{n}} +{b}^{{n}} +{ab}^{{n}−\mathrm{1}} +{ba}^{{n}−\mathrm{1}} \\ $$$$\Leftrightarrow\:{a}^{{n}} +{b}^{{n}} \geqslant{ab}^{{n}−\mathrm{1}} +{ba}^{{n}−\mathrm{1}} \: \\ $$$$\Leftrightarrow{a}^{{n}−\mathrm{1}} \left({a}−{b}\right)\geqslant{b}^{{n}−\mathrm{1}} \left({a}−{b}\right) \\ $$$$\Leftrightarrow\begin{cases}{\overset{{a}−{b}\geqslant\mathrm{0}} {\Leftrightarrow}\:\:{a}^{{n}−\mathrm{1}} \geqslant{b}^{{n}−\mathrm{1}} \:\Leftrightarrow\:{a}\geqslant{b}}\\{\overset{{a}−{b}\leqslant\mathrm{0}} {\Leftrightarrow}\:\:{a}^{{n}−\mathrm{1}} \leqslant{b}^{{n}−\mathrm{1}} \:\Leftrightarrow\:{a}\leqslant{b}}\end{cases} \\ $$

Answered by Cesar1994 last updated on 07/Sep/22

  (a+b)(a^(n−1) +b^(n−1) )=a^n +b^n +ab^(n−1) +a^(n−1) b ...(1)  we proof that a^n +b^n ≥ab^(n−1) +a^(n−1) b...(2)  a^n −a^(n−1) b+b^n −ab^(n−1) =a^(n−1) (a−b)+b^(n−1) (b−a)                                                   =(a^(n−1) −b^(n−1) )(a−b)  without loss of generality, if a≥b>0  ⇒ a^n −a^(n−1) b+b^n −ab^(n−1) =(a^(n−1) −b^(n−1) )(a−b)≥0  ⇒(a+b)(a^(n−1) +b^(n−1) )≤2(a^n +b^n ), using 1 and 2  ⇒((a^(n−1) +b^(n−1) )/2)≤((a^n +b^n )/(a+b))   ■

$$ \\ $$$$\left({a}+{b}\right)\left({a}^{{n}−\mathrm{1}} +{b}^{{n}−\mathrm{1}} \right)={a}^{{n}} +{b}^{{n}} +{ab}^{{n}−\mathrm{1}} +{a}^{{n}−\mathrm{1}} {b}\:...\left(\mathrm{1}\right) \\ $$$${we}\:{proof}\:{that}\:{a}^{{n}} +{b}^{{n}} \geqslant{ab}^{{n}−\mathrm{1}} +{a}^{{n}−\mathrm{1}} {b}...\left(\mathrm{2}\right) \\ $$$${a}^{{n}} −{a}^{{n}−\mathrm{1}} {b}+{b}^{{n}} −{ab}^{{n}−\mathrm{1}} ={a}^{{n}−\mathrm{1}} \left({a}−{b}\right)+{b}^{{n}−\mathrm{1}} \left({b}−{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({a}^{{n}−\mathrm{1}} −{b}^{{n}−\mathrm{1}} \right)\left({a}−{b}\right) \\ $$$$\mathrm{without}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generality},\:\mathrm{if}\:{a}\geqslant{b}>\mathrm{0} \\ $$$$\Rightarrow\:{a}^{{n}} −{a}^{{n}−\mathrm{1}} {b}+{b}^{{n}} −{ab}^{{n}−\mathrm{1}} =\left({a}^{{n}−\mathrm{1}} −{b}^{{n}−\mathrm{1}} \right)\left({a}−{b}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\left({a}+{b}\right)\left({a}^{{n}−\mathrm{1}} +{b}^{{n}−\mathrm{1}} \right)\leqslant\mathrm{2}\left({a}^{{n}} +{b}^{{n}} \right),\:\mathrm{using}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$$\Rightarrow\frac{{a}^{{n}−\mathrm{1}} +{b}^{{n}−\mathrm{1}} }{\mathrm{2}}\leqslant\frac{{a}^{{n}} +{b}^{{n}} }{{a}+{b}}\:\:\:\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com