Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 175836 by ajfour last updated on 08/Sep/22

Commented by ajfour last updated on 08/Sep/22

Ellipse:  x^2 +(y^2 /b^2 )=1

$${Ellipse}:\:\:{x}^{\mathrm{2}} +\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$

Answered by mr W last updated on 08/Sep/22

Commented by mr W last updated on 08/Sep/22

a=1  μ=(b/a)  s=2a  r=(a/2)  say P(a cos θ, b sin θ)  tan φ=−(dx/dy)=−((−a sin θ)/(b cos θ))=((tan θ)/μ)  a cos θ+r cos φ=r  a cos θ=(a/2) (1−(μ/( (√(μ^2 +tan^2  θ)))))  (μ/( (√(μ^2 +tan^2  θ))))=1−2 cos θ  ⇒μ=((tan θ−2 sin θ)/( 2(√(cos θ (1−cos θ)))))   ...(i)  s=b+b sin θ+r sin φ+r=2a  ⇒2μ(1+sin θ)+((tan θ)/( (√(μ^2 +tan^2  θ))))=3   ...(ii)  ⇒θ≈1.1693  ⇒μ≈0.5272 ✓

$${a}=\mathrm{1} \\ $$$$\mu=\frac{{b}}{{a}} \\ $$$${s}=\mathrm{2}{a} \\ $$$${r}=\frac{{a}}{\mathrm{2}} \\ $$$${say}\:{P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\phi=−\frac{{dx}}{{dy}}=−\frac{−{a}\:\mathrm{sin}\:\theta}{{b}\:\mathrm{cos}\:\theta}=\frac{\mathrm{tan}\:\theta}{\mu} \\ $$$${a}\:\mathrm{cos}\:\theta+{r}\:\mathrm{cos}\:\phi={r} \\ $$$${a}\:\mathrm{cos}\:\theta=\frac{{a}}{\mathrm{2}}\:\left(\mathrm{1}−\frac{\mu}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$$\frac{\mu}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}=\mathrm{1}−\mathrm{2}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\mu=\frac{\mathrm{tan}\:\theta−\mathrm{2}\:\mathrm{sin}\:\theta}{\:\mathrm{2}\sqrt{\mathrm{cos}\:\theta\:\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}}\:\:\:...\left({i}\right) \\ $$$${s}={b}+{b}\:\mathrm{sin}\:\theta+{r}\:\mathrm{sin}\:\phi+{r}=\mathrm{2}{a} \\ $$$$\Rightarrow\mathrm{2}\mu\left(\mathrm{1}+\mathrm{sin}\:\theta\right)+\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}=\mathrm{3}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\theta\approx\mathrm{1}.\mathrm{1693} \\ $$$$\Rightarrow\mu\approx\mathrm{0}.\mathrm{5272}\:\checkmark \\ $$

Commented by Tawa11 last updated on 08/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 09/Sep/22

Answered by ajfour last updated on 09/Sep/22

Commented by ajfour last updated on 10/Sep/22

(1−cos θ)^2 +(((3−p−sin θ)^2 )/p^2 )=1  ..(i)  And   (dx/dy)=((4y)/(p^2 x))  ⇒   tan θ=((4(3−p−sin θ))/(p^2 (1−cos θ)))   ...(ii)  ⇒  (1−cos θ)^2 (1+p^2 tan^2 θ)=1  .⇒  (p^2 /4)tan^2 θ=(1/((1−cos θ)^2 ))−1  .....

$$\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\frac{\left(\mathrm{3}−{p}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{p}^{\mathrm{2}} }=\mathrm{1}\:\:..\left({i}\right) \\ $$$${And}\:\:\:\frac{{dx}}{{dy}}=\frac{\mathrm{4}{y}}{{p}^{\mathrm{2}} {x}} \\ $$$$\Rightarrow\:\:\:\mathrm{tan}\:\theta=\frac{\mathrm{4}\left(\mathrm{3}−{p}−\mathrm{sin}\:\theta\right)}{{p}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} \left(\mathrm{1}+{p}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta\right)=\mathrm{1} \\ $$$$.\Rightarrow\:\:\frac{{p}^{\mathrm{2}} }{\mathrm{4}}\mathrm{tan}\:^{\mathrm{2}} \theta=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$..... \\ $$

Commented by mr W last updated on 09/Sep/22

should it not be:  (((1−cos θ)^2 )/2^2 )+(((3−p−sin θ)^2 )/p^2 )=1  ..(i)  And   (dx/dy)=((2^2 y)/(p^2 x))

$${should}\:{it}\:{not}\:{be}: \\ $$$$\frac{\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\left(\mathrm{3}−{p}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{p}^{\mathrm{2}} }=\mathrm{1}\:\:..\left({i}\right) \\ $$$${And}\:\:\:\frac{{dx}}{{dy}}=\frac{\mathrm{2}^{\mathrm{2}} {y}}{{p}^{\mathrm{2}} {x}} \\ $$

Commented by ajfour last updated on 09/Sep/22

yez, thanks sir.

$${yez},\:{thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com