Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 175860 by Shrinava last updated on 08/Sep/22

Answered by mr W last updated on 08/Sep/22

we know:  (1/1^2 )+(1/2^2 )+(1/3^2 )+(1/4^2 )+...=(π^2 /6)  ((1/1^2 )+(1/3^2 )+(1/5^2 )+...)+((1/2^2 )+(1/4^2 )+(1/6^2 )+...)=(π^2 /6)  ((1/1^2 )+(1/3^2 )+(1/5^2 )+...)+(1/4)((1/1^2 )+(1/2^2 )+(1/3^2 )+...)=(π^2 /6)  ((1/1^2 )+(1/3^2 )+(1/5^2 )+...)+(1/4)×(π^2 /6)=(π^2 /6)  (1/1^2 )+(1/3^2 )+(1/5^2 )+...=(π^2 /8)  Σ_(n=1) ^∞ (1/((2n−1)^2 ))=(π^2 /8)    Ω=Σ_(n=1) ^∞ ((4n^2 +1)/((4n^2 −1)^2 ))  =(1/2)Σ_(n=1) ^∞ [(1/((2n−1)^2 ))+(1/((2n+1)^2 ))]  =(1/2)Σ_(n=1) ^∞ [(1/((2n−1)^2 ))+(1/((2n−1)^2 ))]−(1/2)  =Σ_(n=1) ^∞ (1/((2n−1)^2 ))−(1/2)  =(π^2 /8)−(1/2) ✓

weknow:112+122+132+142+...=π26(112+132+152+...)+(122+142+162+...)=π26(112+132+152+...)+14(112+122+132+...)=π26(112+132+152+...)+14×π26=π26112+132+152+...=π28n=11(2n1)2=π28Ω=n=14n2+1(4n21)2=12n=1[1(2n1)2+1(2n+1)2]=12n=1[1(2n1)2+1(2n1)2]12=n=11(2n1)212=π2812

Commented by Tawa11 last updated on 08/Sep/22

Great sir

Greatsir

Answered by mnjuly1970 last updated on 08/Sep/22

 Ω= Σ_(n=1) ^∞ (( (2n+1)^( 2) −4n)/((2n+1)^( 2) (2n−1)^( 2) ))        = Σ_(n=1) ^∞ (1/((2n−1)^( 2) )) −{(1/2)Σ_(n=1) ^∞ (1/((2n−1)^2 )) −(1/((2n+1)^( 2) ))}    = (1/2)Σ_(n=1) ^∞ (( 1)/((2n−1)^( 2) ))  +(1/2) Σ_(n=1) ^∞ (1/((2n−1)^( 2) )) −(1/2)        =Σ_(n=1) ^∞ (1/((2n−1)^( 2) )) −(1/2)= (π^( 2) /8) −(1/2)

Ω=n=1(2n+1)24n(2n+1)2(2n1)2=n=11(2n1)2{12n=11(2n1)21(2n+1)2}=12n=11(2n1)2+12n=11(2n1)212=n=11(2n1)212=π2812

Commented by Tawa11 last updated on 15/Sep/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com