Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 175972 by Linton last updated on 10/Sep/22

((x^(11) +x)/(x^7 +x^5 )) = ((205)/(16))  solve for x (undecic equation )

x11+xx7+x5=20516solveforx(undecicequation)

Answered by BaliramKumar last updated on 10/Sep/22

  let     f(x) = ((x^(11) +x)/(x^7 +x^5 )) = f(−x) = f((1/x)) = f(((−1)/x))    (((x^(10) +1))/(x^4 (x^2 +1))) = ((205)/(16))×(5/5) = ((1025)/(16×5)) = ((1024+1)/(16(4+1))) = ((2^(10) +1)/(2^4 (2^2 +1)))  (((x^(10) +1))/(x^4 (x^2 +1))) = ((2^(10) +1)/(2^4 (2^2 +1)))  x = 2  x = ± 2 or  x = ± (1/2)

letf(x)=x11+xx7+x5=f(x)=f(1x)=f(1x)(x10+1)x4(x2+1)=20516×55=102516×5=1024+116(4+1)=210+124(22+1)(x10+1)x4(x2+1)=210+124(22+1)x=2x=±2orx=±12

Answered by Rasheed.Sindhi last updated on 11/Sep/22

((x^(11) +x)/(x^7 +x^5 )) = ((205)/(16))  ((  ((x^(11) +x)/x^6 )  )/((x^7 +x^5 )/x^6 ))=((205)/(16))  ((x^5 +(1/x^5 ))/(x+(1/x)))=((205)/(16))  x+(1/x)=u  (x+(1/x))^3 =u^3   x^3 +(1/x^3 )+3(x+(1/x))=u^3   x^3 +(1/x^3 )=u^3 −3u..............(i)  (x+(1/x))^2 =u^2   x^2 +(1/x^2 )=u^2 −2................(ii)  (i)×(ii):  x^5 +(1/x^5 )+x+(1/x)=u^5 −3u^3 −2u^3 +6u  x^5 +(1/x^5 )=u^5 −5u^3 +5u  ((u^5 −5u^3 +5u)/u)=((205)/(16))  u^4 −5u^2 +5−((205)/(16))=0  16u^4 −80u^2 −125=0  u^2 =((80±(√(6400+8000)))/(32))=((80±120)/(32))=((25)/4),−(5/4)  u=±(5/2),±((i(√5))/2)  x+(1/x)=±(5/2)  ∣ x+(1/x)=±((i(√5))/2)^((A))   2x^2 +2=±5x    { ((2x^2 +2=5x⇒2x^2 −5x+2=0^• )),((2x^2 +2=−5x⇒2x^2 +5x+2=0^(••) )) :}  ^• 2x^2 −5x+2=0   x=((5±(√(25−16)))/4)       =((5±3)/4)=2,(1/2)  ^(••) 2x^2 +5x+2=0    x=((−5±(√(25−16)))/4)        =((−5±3)/4)=−(1/2),−2    ^((A))  x+(1/x)=±((i(√5))/2)⇒ { ((2x^2 −i(√5) x+2=0)),((2x^2 +i(√5) x+2=0)) :}  2x^2 −i(√5) x+2=0 ∣ 2x^2 +i(√5) x+2=0  x=((i(√5) ±(√(−5−16)))/4) ∣ x=((−i(√5) ±(√(−5−16)))/4)  x=((i(√5) ±i(√(21)))/4) ∣ x=((−i(√5) ±i(√(21)))/4)  x=((i((√5) ±(√(21)) ))/4) ∣ x=((i(−(√5) ±(√(21)) ))/4)  These also may be valid solutions.

x11+xx7+x5=20516x11+xx6x7+x5x6=20516x5+1x5x+1x=20516x+1x=u(x+1x)3=u3x3+1x3+3(x+1x)=u3x3+1x3=u33u..............(i)(x+1x)2=u2x2+1x2=u22................(ii)(i)×(ii):x5+1x5+x+1x=u53u32u3+6ux5+1x5=u55u3+5uu55u3+5uu=20516u45u2+520516=016u480u2125=0u2=80±6400+800032=80±12032=254,54u=±52,±i52x+1x=±52x+1x=±i52(A)2x2+2=±5x{2x2+2=5x2x25x+2=02x2+2=5x2x2+5x+2=02x25x+2=0x=5±25164=5±34=2,122x2+5x+2=0x=5±25164=5±34=12,2(A)x+1x=±i52{2x2i5x+2=02x2+i5x+2=02x2i5x+2=02x2+i5x+2=0x=i5±5164x=i5±5164x=i5±i214x=i5±i214x=i(5±21)4x=i(5±21)4Thesealsomaybevalidsolutions.

Commented by BaliramKumar last updated on 11/Sep/22

x = ((±5±3)/4)  x = ((5+3)/4) = 2  x = ((−5−3)/4) = −2  x = ((5−3)/4) = (1/2)  x = ((−5+3)/4) = − (1/2)

x=±5±34x=5+34=2x=534=2x=534=12x=5+34=12

Commented by Rasheed.Sindhi last updated on 11/Sep/22

Thank you Baliram, I′ve added  the solutions: x=(1/2),x=−(1/2) now.  Please revisit my answer.

ThankyouBaliram,Iveaddedthesolutions:x=12,x=12now.Pleaserevisitmyanswer.

Commented by BaliramKumar last updated on 11/Sep/22

I check the answers by Hiper scientific calculator App ✓

IchecktheanswersbyHiperscientificcalculatorApp

Commented by Rasheed.Sindhi last updated on 11/Sep/22

������

Commented by Tawa11 last updated on 15/Sep/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com