Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 175987 by stelor last updated on 10/Sep/22

please calculate  I=∫_0 ^(π/2) (dx/(1+(tanx)^(√2) ))  J=∫_0 ^π (dx/(a^2 cos^2 x+sin^2 x))  K=∫_0 ^(π/2) (dx/(3tanx+2))

pleasecalculateI=0π2dx1+(tanx)2J=0πdxa2cos2x+sin2xK=0π2dx3tanx+2

Answered by Ar Brandon last updated on 10/Sep/22

J=∫_0 ^π (dx/(a^2 cos^2 x+sin^2 x))=∫_0 ^π ((sec^2 x)/(a^2 +tan^2 x))dx     =2∫_0 ^(π/2) ((d(tanx))/(a^2 +tan^2 x))=(2/a)[arctan(((tanx)/a))]_0 ^(π/2) =(π/a)

J=0πdxa2cos2x+sin2x=0πsec2xa2+tan2xdx=20π2d(tanx)a2+tan2x=2a[arctan(tanxa)]0π2=πa

Commented by stelor last updated on 10/Sep/22

Thanks

Thanks

Answered by Ar Brandon last updated on 10/Sep/22

I=∫_0 ^(π/2) (dx/(1+(tanx)^(√2) ))=∫_0 ^(π/2) (((cosx)^(√2) )/((sinx)^(√2) +(cosx)^(√2) ))dx  ...(i)  I=∫_0 ^(π/2) (((sinx)^(√2) )/((sinx)^(√2) +(cosx)^(√2) ))dx   ...(ii)  (i) + (ii) ⇒  2I=∫_0 ^(π/2) (((sinx)^(√2) +(cosx)^(√2) )/((sinx)^(√2) +(cosx)^(√2) ))dx=(π/2)  ⇒I=(π/4)

I=0π2dx1+(tanx)2=0π2(cosx)2(sinx)2+(cosx)2dx...(i)I=0π2(sinx)2(sinx)2+(cosx)2dx...(ii)(i)+(ii)2I=0π2(sinx)2+(cosx)2(sinx)2+(cosx)2dx=π2I=π4

Answered by Ar Brandon last updated on 10/Sep/22

Commented by Ar Brandon last updated on 10/Sep/22

K≈0,335236

K0,335236

Commented by Ar Brandon last updated on 11/Sep/22

K=∫_0 ^(π/2) (dx/(3tanx+2))=∫_0 ^1 (2/(3(((2t)/(1−t^2 )))+2))∙(dt/(1+t^2 ))=∫_0 ^1 ((t^2 −1)/(2t^2 −6t−2))∙((2dt)/(t^2 +1))      =∫_0 ^1 ((t^2 −1)/((t^2 −3t−1)(t^2 +1)))dt=(1/(13))∫_0 ^1 (((6t−9)/(t^2 −3t−1))−((6t−4)/(t^2 +1)))dt  −−−−−−−−−−−−−−−−−−−−−−−−−−−  ((at+b)/(t^2 −3t−1))+((ct+d)/(t^2 +1))=(((at+b)(t^2 +1)+(ct+d)(t^2 −3t−1))/((t^2 −3t−1)(t^2 +1)))  a+c=^t^3  0, b−3c+d=1, a−c−3d=0, b−d=−1  lim_(t→i)  ⇒(ci+d)(−2−3i)=(−2d+3c)−i(2c+3d)=−2  ⇒c=−(6/(13)), d=(4/(13)), ⇒b=−(9/(13)), a=(6/(13))  −−−−−−−−−−−−−−−−−−−−−−−−−−−       =(1/(13))∫_0 ^1 ((3(2t−3))/(t^2 −3t−1))dt−(3/(13))∫_0 ^1 ((2t)/(t^2 +1))dt+(4/(13))∫_0 ^1 (1/(t^2 +1))dt      =(3/(13))[ln∣t^2 −3t−1∣]_0 ^1 −(3/(13))[ln(t^2 +1)]_0 ^1 +(4/(13))[arctan(t)]_0 ^1       =(3/(13))[ln∣((t^2 −3t−1)/(t^2 +1))∣]_0 ^1 +(4/(13))((π/4))=(1/(13))ln((3/2))^3 +(π/(13))      =(1/(13))ln(((27)/8))+(π/(13))=(1/(13))(π+ln(((27)/8)))≈0,33523

K=0π2dx3tanx+2=0123(2t1t2)+2dt1+t2=01t212t26t22dtt2+1=01t21(t23t1)(t2+1)dt=11301(6t9t23t16t4t2+1)dtat+bt23t1+ct+dt2+1=(at+b)(t2+1)+(ct+d)(t23t1)(t23t1)(t2+1)a+c=t30,b3c+d=1,ac3d=0,bd=1limti(ci+d)(23i)=(2d+3c)i(2c+3d)=2c=613,d=413,b=913,a=613=113013(2t3)t23t1dt313012tt2+1dt+413011t2+1dt=313[lnt23t1]01313[ln(t2+1)]01+413[arctan(t)]01=313[lnt23t1t2+1]01+413(π4)=113ln(32)3+π13=113ln(278)+π13=113(π+ln(278))0,33523

Answered by a.lgnaoui last updated on 10/Sep/22

  k=∫_0 ^(π/2) (dx/(3tanx+2))      posons t=tanx   x=arctant  dt=(1+t^2 )dx       dx=(dt/(1+t^2 ))  k=∫_0 ^∞ (dt/((3t+2)(1+t^2 )))=∫_0 ^∞ (((−3t+2)/(13(1+t^2 )))+(9/(13(3t+2))))dt  =−(3/(26))∫((2t−(2/3))/(1+t^2 ))dt+(9/(13))∫(dt/(3t+2))  =−(3/(26))[log(1+t^2 )]_0 ^∞ +(1/(13))∫_0 ^∞ (dt/(1+t^2 ))+(9/(13))[log(3t+2)]_0 ^∞   =((−3)/(26))[log(1+t^2 )]_0 ^∞ +(1/(13))[arctan(t)]_0 ^∞ +(9/(13))[log(3t+2)]_0 ^∞     ((−1)/(13))[log(1+t^2 )]_0 ^∞ +(9/(13))[log(3t+2)]_0 ^∞ +(π/(26))  =log[((((3t+2)^(9/(13)) )/((1+t^2 )^(1/(13)) )))]_0 ^∞ +(π/(26))  t=0    (((3t+2)^(9/(13)) )/((1+t)^(1/(13)) )) =2^(9/(13))       t→∞    ((3t^(9/(13)) (1+(2/t))^(9/(13)) )/(t^(1/(13)) (1+(1/t))^(1/(13)) ))=3^(9/(13)) t^(8/(13))   k=(9/(13))log((3/2))+(π/(26))+(8/(13)) lim_(t→∞) (logt)  k=+∞

k=0π2dx3tanx+2posonst=tanxx=arctantdt=(1+t2)dxdx=dt1+t2k=0dt(3t+2)(1+t2)=0(3t+213(1+t2)+913(3t+2))dt=3262t231+t2dt+913dt3t+2=326[log(1+t2)]0+1130dt1+t2+913[log(3t+2)]0=326[log(1+t2)]0+113[arctan(t)]0+913[log(3t+2)]0113[log(1+t2)]0+913[log(3t+2)]0+π26=log[((3t+2)913(1+t2)113)]0+π26t=0(3t+2)913(1+t)113=2913t3t913(1+2t)913t113(1+1t)113=3913t813k=913log(32)+π26+813limt(logt)k=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com