Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17604 by tawa tawa last updated on 08/Jul/17

∫_(  0) ^(  n)  x^2 (n − x)^p  dx       for   p > 0

$$\int_{\:\:\mathrm{0}} ^{\:\:\mathrm{n}} \:\mathrm{x}^{\mathrm{2}} \left(\mathrm{n}\:−\:\mathrm{x}\right)^{\mathrm{p}} \:\mathrm{dx}\:\:\:\:\:\:\:\mathrm{for}\:\:\:\mathrm{p}\:>\:\mathrm{0} \\ $$

Answered by sma3l2996 last updated on 08/Jul/17

t=n−x⇒dt=−dx  I=∫_0 ^n x^2 (n−x)^p dx=∫_0 ^n (n−t)^2 t^p dt=∫_0 ^n (n^2 t^p −2nt^(p+1) +t^(p+2) )dt  =[(n^2 /(p+1))t^(p+1) −((2n)/(p+2))t^(p+2) +(t^(p+3) /(p+3))]_0 ^n   =(n^2 /(p+1))n^(p+1) −((2n)/(p+2))n^(p+2) +(n^(p+3) /(p+3))  =n^(p+3) ((1/(p+1))−(2/(p+2))+(1/(p+3)))=n^(p+3) ((((p+3)(p+2)−2(p+1)(p+3)+(p+1)(p+2))/((p+1)(p+2)(p+3))))  =n^(p+3) (((p^2 +5p+6−2p^2 −8p−6+p^2 +3p+2)/((p+1)(p+2)(p+3))))  I=((2n^(p+3) )/((p+1)(p+2)(p+3)))

$${t}={n}−{x}\Rightarrow{dt}=−{dx} \\ $$ $${I}=\int_{\mathrm{0}} ^{{n}} {x}^{\mathrm{2}} \left({n}−{x}\right)^{{p}} {dx}=\int_{\mathrm{0}} ^{{n}} \left({n}−{t}\right)^{\mathrm{2}} {t}^{{p}} {dt}=\int_{\mathrm{0}} ^{{n}} \left({n}^{\mathrm{2}} {t}^{{p}} −\mathrm{2}{nt}^{{p}+\mathrm{1}} +{t}^{{p}+\mathrm{2}} \right){dt} \\ $$ $$=\left[\frac{{n}^{\mathrm{2}} }{{p}+\mathrm{1}}{t}^{{p}+\mathrm{1}} −\frac{\mathrm{2}{n}}{{p}+\mathrm{2}}{t}^{{p}+\mathrm{2}} +\frac{{t}^{{p}+\mathrm{3}} }{{p}+\mathrm{3}}\right]_{\mathrm{0}} ^{{n}} \\ $$ $$=\frac{{n}^{\mathrm{2}} }{{p}+\mathrm{1}}{n}^{{p}+\mathrm{1}} −\frac{\mathrm{2}{n}}{{p}+\mathrm{2}}{n}^{{p}+\mathrm{2}} +\frac{{n}^{{p}+\mathrm{3}} }{{p}+\mathrm{3}} \\ $$ $$={n}^{{p}+\mathrm{3}} \left(\frac{\mathrm{1}}{{p}+\mathrm{1}}−\frac{\mathrm{2}}{{p}+\mathrm{2}}+\frac{\mathrm{1}}{{p}+\mathrm{3}}\right)={n}^{{p}+\mathrm{3}} \left(\frac{\left({p}+\mathrm{3}\right)\left({p}+\mathrm{2}\right)−\mathrm{2}\left({p}+\mathrm{1}\right)\left({p}+\mathrm{3}\right)+\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)\left({p}+\mathrm{3}\right)}\right) \\ $$ $$={n}^{{p}+\mathrm{3}} \left(\frac{{p}^{\mathrm{2}} +\mathrm{5}{p}+\mathrm{6}−\mathrm{2}{p}^{\mathrm{2}} −\mathrm{8}{p}−\mathrm{6}+{p}^{\mathrm{2}} +\mathrm{3}{p}+\mathrm{2}}{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)\left({p}+\mathrm{3}\right)}\right) \\ $$ $${I}=\frac{\mathrm{2}{n}^{{p}+\mathrm{3}} }{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)\left({p}+\mathrm{3}\right)}\: \\ $$

Commented bytawa tawa last updated on 08/Jul/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by alex041103 last updated on 08/Jul/17

We use the substitution   u=n−x⇒−du=dx and x^2  = (n−u)^2   And we change the limits of integration  x=0    x=n  u=n    u=0  ⇒∫_0 ^n  x^2 (n−x)^p  dx = −∫_n ^0 (n−u)^2 u^p  du  =∫_0 ^n  (n^2 −2nu+u^2 )u^p  du  =n^2 ∫_0 ^n u^p du − 2n∫_0 ^n u^(p+1)  du + ∫_0 ^n u^(p+2)  du  =n^2  ((n^(p+1) −0)/(p+1)) − 2n((n^(p+2) −0)/(p+2))+((n^(p+3) −0)/(p+3))  =(n^(p+3) /(p+1))−2(n^(p+3) /(p+2))+(n^(p+3) /(p+3))  =n^(p+3) ((1/(p+1))−(2/(p+2))+(1/(p+3)))  This can be expressed as  ∫_0 ^n  x^2 (n−x)^p  dx = ((2n^(p+3) )/((p+1)(p+2)(p+3)))

$$\mathrm{We}\:\mathrm{use}\:\mathrm{the}\:\mathrm{substitution}\: \\ $$ $${u}={n}−{x}\Rightarrow−{du}={dx}\:\mathrm{and}\:{x}^{\mathrm{2}} \:=\:\left({n}−{u}\right)^{\mathrm{2}} \\ $$ $$\mathrm{And}\:\mathrm{we}\:\mathrm{change}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\:\mathrm{integration} \\ $$ $${x}=\mathrm{0}\:\:\:\:{x}={n} \\ $$ $${u}={n}\:\:\:\:{u}=\mathrm{0} \\ $$ $$\Rightarrow\underset{\mathrm{0}} {\overset{{n}} {\int}}\:{x}^{\mathrm{2}} \left({n}−{x}\right)^{{p}} \:{dx}\:=\:−\underset{{n}} {\overset{\mathrm{0}} {\int}}\left({n}−{u}\right)^{\mathrm{2}} {u}^{{p}} \:{du} \\ $$ $$=\underset{\mathrm{0}} {\overset{{n}} {\int}}\:\left({n}^{\mathrm{2}} −\mathrm{2}{nu}+{u}^{\mathrm{2}} \right){u}^{{p}} \:{du} \\ $$ $$={n}^{\mathrm{2}} \underset{\mathrm{0}} {\overset{{n}} {\int}}{u}^{{p}} {du}\:−\:\mathrm{2}{n}\underset{\mathrm{0}} {\overset{{n}} {\int}}{u}^{{p}+\mathrm{1}} \:{du}\:+\:\underset{\mathrm{0}} {\overset{{n}} {\int}}{u}^{{p}+\mathrm{2}} \:{du} \\ $$ $$={n}^{\mathrm{2}} \:\frac{{n}^{{p}+\mathrm{1}} −\mathrm{0}}{{p}+\mathrm{1}}\:−\:\mathrm{2}{n}\frac{{n}^{{p}+\mathrm{2}} −\mathrm{0}}{{p}+\mathrm{2}}+\frac{{n}^{{p}+\mathrm{3}} −\mathrm{0}}{{p}+\mathrm{3}} \\ $$ $$=\frac{{n}^{{p}+\mathrm{3}} }{{p}+\mathrm{1}}−\mathrm{2}\frac{{n}^{{p}+\mathrm{3}} }{{p}+\mathrm{2}}+\frac{{n}^{{p}+\mathrm{3}} }{{p}+\mathrm{3}} \\ $$ $$={n}^{{p}+\mathrm{3}} \left(\frac{\mathrm{1}}{{p}+\mathrm{1}}−\frac{\mathrm{2}}{{p}+\mathrm{2}}+\frac{\mathrm{1}}{{p}+\mathrm{3}}\right) \\ $$ $$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as} \\ $$ $$\underset{\mathrm{0}} {\overset{{n}} {\int}}\:{x}^{\mathrm{2}} \left({n}−{x}\right)^{{p}} \:{dx}\:=\:\frac{\mathrm{2}{n}^{{p}+\mathrm{3}} }{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)\left({p}+\mathrm{3}\right)} \\ $$

Commented bytawa tawa last updated on 08/Jul/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com