Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176102 by MathsFan last updated on 12/Sep/22

         Prove that        4n<2^n  for all n≥5

Provethat 4n<2nforalln5

Answered by a.lgnaoui last updated on 12/Sep/22

n=5   2^5 =32         4×5=20<32  n=6   2^6 =64         4×6=24<64  n=7    2^7 =128      4×7=28<128  ...........................  n+1     2^(n+1)           4(n+1)=4n+4<2^n +4                                     n[4(n+1)]<n(2^n +4)<n(2×2^n )<n2^(n+1)   donc   4(n+1)<2^(n+1)   n est vrai pour tout n≥5 (n∈ N)

n=525=324×5=20<32 n=626=644×6=24<64 n=727=1284×7=28<128 ........................... n+12n+14(n+1)=4n+4<2n+4 n[4(n+1)]<n(2n+4)<n(2×2n)<n2n+1 donc4(n+1)<2n+1 nestvraipourtoutn5(nN)

Commented byMathsFan last updated on 13/Sep/22

  Merci Monsieur

Merci Monsieur \n

Answered by mahdipoor last updated on 12/Sep/22

if 4a<2^a  ⇒  4a+4<2^a +4=2^a ×(1+(4/2^a ))<2^a ×2   (a>5)  ⇒4(a+1)<2^(a+1)     and 4×5<2^5   ⇒⇒ 4n<2^n  for ∀n≥5

if4a<2a 4a+4<2a+4=2a×(1+42a)<2a×2(a>5) 4(a+1)<2a+1 and4×5<25 ⇒⇒4n<2nforn5

Commented byMathsFan last updated on 13/Sep/22

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com