Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17614 by Tinkutara last updated on 08/Jul/17

The triangle ABC has CA = CB. P is a  point on the circumcircle between A  and B (and on the opposite side of the  line AB to C). D is the foot of the  perpendicular from C to PB. Show that  PA + PB = 2∙PD.

$$\mathrm{The}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{CA}\:=\:\mathrm{CB}.\:\mathrm{P}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{between}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\left(\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{line}\:\mathrm{AB}\:\mathrm{to}\:\mathrm{C}\right).\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{perpendicular}\:\mathrm{from}\:\mathrm{C}\:\mathrm{to}\:\mathrm{PB}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{PA}\:+\:\mathrm{PB}\:=\:\mathrm{2}\centerdot\mathrm{PD}. \\ $$

Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17

CA×PB+CB×PA=CP×AB(petolemy′s teorem)  ⇒CA(PA+PB)=CP×AB  ⇒PA+PB=((CP×AB)/(CA))  ((AB)/(AC))=((sinC)/(sinB))=((sin(180−2B))/(sinB))=((sin2B)/(sinB))=2cosB  cos∡CPB=((PD)/(CP))⇒CP=((PD)/(cos∡CPB))=((PD)/(cosA))=  =((PD)/(cosB))  ⇒PA+PB=((CP.AB)/(CA))=2cosB.((PD)/(cosB))=2.PD .■  note:∡CPB=∡CAB,∡APC=∡ABC

$${CA}×{PB}+{CB}×{PA}={CP}×{AB}\left({petolemy}'{s}\:{teorem}\right) \\ $$$$\Rightarrow{CA}\left({PA}+{PB}\right)={CP}×{AB} \\ $$$$\Rightarrow{PA}+{PB}=\frac{{CP}×{AB}}{{CA}} \\ $$$$\frac{{AB}}{{AC}}=\frac{{sinC}}{{sinB}}=\frac{{sin}\left(\mathrm{180}−\mathrm{2}{B}\right)}{{sinB}}=\frac{{sin}\mathrm{2}{B}}{{sinB}}=\mathrm{2}{cosB} \\ $$$${cos}\measuredangle{CPB}=\frac{{PD}}{{CP}}\Rightarrow{CP}=\frac{{PD}}{{cos}\measuredangle{CPB}}=\frac{{PD}}{{cosA}}= \\ $$$$=\frac{{PD}}{{cosB}} \\ $$$$\Rightarrow{PA}+{PB}=\frac{{CP}.{AB}}{{CA}}=\mathrm{2}{cosB}.\frac{{PD}}{{cosB}}=\mathrm{2}.{PD}\:.\blacksquare \\ $$$${note}:\measuredangle{CPB}=\measuredangle{CAB},\measuredangle{APC}=\measuredangle{ABC} \\ $$

Commented by Tinkutara last updated on 09/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com