Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176155 by adhigenz last updated on 14/Sep/22

Find how many distinct integers are there in this sequence:  ⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋  where ⌊x⌋ is the greatest integer that is less than or equal to x

Findhowmanydistinctintegersarethereinthissequence:12+1100,22+2100,32+3100,...,1002+100100wherexisthegreatestintegerthatislessthanorequaltox

Commented by Rasheed.Sindhi last updated on 14/Sep/22

102?

102?

Commented by mr W last updated on 14/Sep/22

there are totally 100 integers. so the  number of distinct integers must be  less than 100.

therearetotally100integers.sothenumberofdistinctintegersmustbelessthan100.

Commented by Rasheed.Sindhi last updated on 14/Sep/22

You′re very right sir!I′ve committed  mistake.

Youreveryrightsir!Ivecommittedmistake.

Answered by Rasheed.Sindhi last updated on 14/Sep/22

⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋    ⌊((n^2 +n)/(100))⌋=⌊((  ((n(n+1))/2)  )/((100)/2))⌋=⌊((  ((n(n+1))/2)  )/(50))⌋      0≤((n(n+1))/2)<50 ;n=1,2,...,9:        ⌊((  ((n(n+1))/2)  )/(50))⌋=0  50≤((n(n+1))/2)<100;n=10,11,...,13:        ⌊((  ((n(n+1))/2)  )/(50))⌋=1  ....  ...  50k≤((n(n+1))/2)<50(k+1):        ⌊((  ((n(n+1))/2)  )/(50))⌋=k  We′ve to solve many such   inequalities...  Continue...

12+1100,22+2100,32+3100,...,1002+100100n2+n100=n(n+1)21002=n(n+1)2500n(n+1)2<50;n=1,2,...,9:n(n+1)250=050n(n+1)2<100;n=10,11,...,13:n(n+1)250=1.......50kn(n+1)2<50(k+1):n(n+1)250=kWevetosolvemanysuchinequalities...Continue...

Answered by Rasheed.Sindhi last updated on 16/Sep/22

≪“SOMETHING is better than NOTHING”_(■ A       N       S       W       E       R ■) ≫  ⌊((1^2 +1)/(100))⌋, ⌊((2^2 +2)/(100))⌋, ⌊((3^2 +3)/(100))⌋, ..., ⌊((100^2 +100)/(100))⌋    ⌊((n^2 +n)/(100))⌋=⌊((  ((n(n+1))/2)  )/((100)/2))⌋=⌊((  ((n(n+1))/2)  )/(50))⌋      50k≤((n(n+1))/2)<50(k+1) ,k∈{0,1,2,...}:        ⌊((  ((n(n+1))/2)  )/(50))⌋=k  For (N/(D∈N)) to be integer, N should be  integral multiple of D   determinant ((n,(n(n+1)/2_(cumulative total^(OR) ) )),(1,1),(2,3),(3,6),(4,(10)),(5,(15)),(6,(21)),(7,(28)),(8,(36)),(9,(45<50   (1))),((10),(55)),((11),(66)),((12),(78)),((13),(91<100   (2))),((14),(105)),((15),(120)),((16),(136<150 (3))),((17),(153)),((18),(171)),((19),(190<200 (4))),((20),(210)),((21),(231<250 (5))),((22),(253)),((23),(276<300 (6))),((24),(300)),((25),(325<350 (7))),((26),(351)),((27),(378<400 (8))),((28),(406)),((29),(435<450 (9))),((30),(465)),((31),(496<500 (10))),((32),(528<550 (11))),((33),(561)),((34),(595<600 (12))),((35),(630<650 (13))),((36),(666<700 (14))),((37),(703)),((38),(741<750 (15))),((39),(780<800 (16)),((40),(820<850 (17))),((41),(861<900 (18))),((42),(903)),((43),(946<950 (19))),((44),(990<1000 (20))),((45),(1035<1050 (21))),((46),(1081<1100 (22))),((47),(1128<1150 (23))),((48),(1176<1200 (24))),((49),(1225<1250 (25))),((50),(1275<1300 (26))))  determinant ((n,(n(n+1)/2_(cumulative total^(OR) ) )),((51),(1326<1350 (27))),((52),(1378<1400 (28))),((53),(1431<1450 (29))),((54),(1485<1500 (30)),((55),(1540<1550 (31))),((56),(1596<1600 (32))),((57),(1653<1700 (33))),((58),(1711<1750 (34))),((59),(1770<1800 (35))),((60),(1830<1850 (36))),((61),(1891<1900 (37))),((62),(1953<2000 (38))),((63),(2016<2050 (39))),((64),(2080<2100 (40))),((65),(2145<2150 (41))),((66),(2211<2250 (42))),((67),(2278<2300 (43))),((68),(2346<2350 (44))),((69),(2415<2450 (45))),((70),(2485<2500 (46))),((71),(2556<2600 (47))),((72),(2628<2650 (48))),((73),(2701<2750 (49))),((74),(2775<2800 (50))),((75),(2850<2900 (51))),((76),(2926<2950 (52))),((77),(3003<3050 (53))),((78),(3081<3100 (54))),((79),(3160<3200 (55))),((80),(3240<3250 (56))),((81),(3321<3350 (57))),((82),(3403<3450 (58))),((83),(3486<3500 (59))),((84),(3570<3600 (60))),((85),(3655<3700 (61))),((86),(3741<3750 (62))),((87),(3828<3850 (63))),((88),(3916<3950 (64))),((89),(4005<4050 (65))),((90),(4095<4100 (66))),((91),(4186<4200 (67))),((92),(4278<4300 (68))),((93),(4371<4400 (69))),((94),(4465<4500 (70))),((95),(4560<4600 (71))),((96),(4656<4700 (72))),((97),(4753<4800 (73))),((98),(4851<4900 (74))),((99),(4950<5000 (75))),((100),(5050<5100 (76)_( determinant (((     76     )))) )))  Changing colour  of font here   means ′other distinct integer′.

SOMETHINGisbetterthanNOTHINGANSWER12+1100,22+2100,32+3100,...,1002+100100n2+n100=n(n+1)21002=n(n+1)25050kn(n+1)2<50(k+1),k{0,1,2,...}:n(n+1)250=kForNDNtobeinteger,NshouldbeintegralmultipleofDnn(n+1)/2cumulativetotalOR112336410515621728836945<50(1)1055116612781391<100(2)141051512016136<150(3)171531817119190<200(4)2021021231<250(5)2225323276<300(6)2430025325<350(7)2635127378<400(8)2840629435<450(9)3046531496<500(10)32528<550(11)3356134595<600(12)35630<650(13)36666<700(14)3770338741<750(15)39780<800(1640820<850(17)41861<900(18)4290343946<950(19)44990<1000(20)451035<1050(21)461081<1100(22)471128<1150(23)481176<1200(24)491225<1250(25)501275<1300(26)nn(n+1)/2cumulativetotalOR511326<1350(27)521378<1400(28)531431<1450(29)541485<1500(30551540<1550(31)561596<1600(32)571653<1700(33)581711<1750(34)591770<1800(35)601830<1850(36)611891<1900(37)621953<2000(38)632016<2050(39)642080<2100(40)652145<2150(41)662211<2250(42)672278<2300(43)682346<2350(44)692415<2450(45)702485<2500(46)712556<2600(47)722628<2650(48)732701<2750(49)742775<2800(50)752850<2900(51)762926<2950(52)773003<3050(53)783081<3100(54)793160<3200(55)803240<3250(56)813321<3350(57)823403<3450(58)833486<3500(59)843570<3600(60)853655<3700(61)863741<3750(62)873828<3850(63)883916<3950(64)894005<4050(65)904095<4100(66)914186<4200(67)924278<4300(68)934371<4400(69)944465<4500(70)954560<4600(71)964656<4700(72)974753<4800(73)984851<4900(74)994950<5000(75)1005050<5100(76)76Changingcolouroffontheremeansotherdistinctinteger.

Commented by mr W last updated on 15/Sep/22

sum(if(ceil(a(k))<a(k+1)),k=0..101)

sum(if(ceil(a(k))<a(k+1)),k=0..101)

Commented by Rasheed.Sindhi last updated on 15/Sep/22

Ans: 76  adhigenz sir, please confirm the  answer before I give final shape to  my solution.

Ans:76adhigenzsir,pleaseconfirmtheanswerbeforeIgivefinalshapetomysolution.

Commented by mr W last updated on 15/Sep/22

answer 76 is correct sir.

answer76iscorrectsir.

Commented by Rasheed.Sindhi last updated on 15/Sep/22

T h a n k s   sir!

Thankssir!

Commented by mr W last updated on 15/Sep/22

⌊((n^2 +n)/(100))⌋=k  1≤n≤100  ⇒0≤k≤101  but not each number from 0 to 101 is  for k possible.    k≤((n(n+1))/(100))<k+1  100k≤n(n+1)<100(k+1)  n^2 +n−100k≥0  n≥((−1+(√(1+400k)))/2)  n^2 +n−100(k+1)<0  n<((−1+(√(1+400(k+1))))/2)  ((−1+(√(1+400k)))/2)≤n<((−1+(√(1+400(k+1))))/2)  we can see a “k” is possible, i.e. a “n”  exists, only if  ⌈((−1+(√(1+400k)))/2)⌉<((−1+(√(1+400(k+1))))/2)  for k from 0 to 101, only 76 numbers  fulfill this condition. i checked this  using Graph.

n2+n100=k1n1000k101butnoteachnumberfrom0to101isforkpossible.kn(n+1)100<k+1100kn(n+1)<100(k+1)n2+n100k0n1+1+400k2n2+n100(k+1)<0n<1+1+400(k+1)21+1+400k2n<1+1+400(k+1)2wecanseeakispossible,i.e.anexists,onlyif1+1+400k2<1+1+400(k+1)2forkfrom0to101,only76numbersfulfillthiscondition.icheckedthisusingGraph.

Commented by mr W last updated on 15/Sep/22

Commented by mr W last updated on 15/Sep/22

you did a nice work sir using the table!

youdidaniceworksirusingthetable!

Commented by Rasheed.Sindhi last updated on 15/Sep/22

T_ ^(H^A N) X                     S_I R

THANXSIR

Commented by Tawa11 last updated on 18/Sep/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com