All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 176213 by cortano1 last updated on 15/Sep/22
limx→0arctanxarcsinx−x=?
Answered by flamable last updated on 15/Sep/22
BythehelpofTaylor−Youngformulaeatx=0wehavethefollowing:11+x=1−x+x2−x3+...+(−1)nxnn∈Nwhenx=t211+t2=1−t2+t4−t6+...⇒arctan(t)=t−13t3+t3ε(t),ε(t)→0t→011−x=1+x+x2+x3+...+xnn∈Nwhenx=t211−t2=1+t2+t4+...+t2n11−t2=1−12t2+38t4+...⇒arcsin(t)=t−16t3+t3ε(t),ε(t)→0t→0limt→0arctan(t)arcsin(t)−t=limt→0t−13t3+t3ε(t)t−16t3+t3ε(t)−t=limt→0−t(1−13t2+t2ε(t))t(16t2+t2ε(t))=−1∴limt→0arctan(t)arcsin(t)−t=−1
Commented by cortano1 last updated on 16/Sep/22
No
Commented by Tawa11 last updated on 25/Sep/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com