Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 176213 by cortano1 last updated on 15/Sep/22

lim_(x→0)   ((arctan x)/(arcsin x−x)) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{arctan}\:\mathrm{x}}{\mathrm{arcsin}\:\mathrm{x}−\mathrm{x}}\:=? \\ $$

Answered by flamable last updated on 15/Sep/22

  By the help of Taylor-Young formulae at   x = 0 we have the following :  (1/(1+x)) = 1−x+x^2 −x^3 +...+(−1)^n x^n    n∈N  when x = t^2   (1/(1+t^2 )) = 1−t^2 +t^4 −t^6 +...  ⇒ arctan(t) = t−(1/3)t^3 +t^3 ε(t), ε(t)→0_(t→0)   (1/(1−x)) = 1+x+x^2 +x^3 +...+x^n      n∈N  when x = t^2   (1/(1−t^2 )) = 1+t^2 +t^4 +...+t^(2n)   (1/( (√(1−t^2  )) )) = 1−(1/2)t^2 +(3/8)t^4 +...  ⇒ arcsin(t) = t−(1/6)t^3 +t^3 ε(t),  ε(t)→0_(t→0)   lim_(t→0)  ((arctan(t))/(arcsin(t)−t)) = lim_(t→0)  ((t−(1/3)t^3 +t^3 ε(t))/(t−(1/6)t^3 +t^3 ε(t)−t))                                          = lim_(t→0)  −((t(1−(1/3)t^2 +t^2 ε(t)))/(t((1/6)t^2 +t^2 ε(t))))                                         = −1  ∴ lim_(t→0 ) ((arctan(t))/(arcsin(t)−t)) = −1

$$ \\ $$$${By}\:{the}\:{help}\:{of}\:{Taylor}-{Young}\:{formulae}\:{at}\: \\ $$$${x}\:=\:\mathrm{0}\:{we}\:{have}\:{the}\:{following}\:: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\:\mathrm{1}−{x}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} +...+\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\:\:{n}\in\mathbb{N} \\ $$$${when}\:{x}\:=\:{t}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\mathrm{1}−{t}^{\mathrm{2}} +{t}^{\mathrm{4}} −{t}^{\mathrm{6}} +... \\ $$$$\Rightarrow\:{arctan}\left({t}\right)\:=\:{t}−\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} +{t}^{\mathrm{3}} \varepsilon\left({t}\right),\:\varepsilon\left({t}\right)\rightarrow\mathrm{0}_{{t}\rightarrow\mathrm{0}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{{n}} \:\:\:\:\:{n}\in\mathbb{N} \\ $$$${when}\:{x}\:=\:{t}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{t}^{\mathrm{2}} }\:=\:\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} +...+{t}^{\mathrm{2}{n}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} \:}\:}\:=\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{8}}{t}^{\mathrm{4}} +... \\ $$$$\Rightarrow\:{arcsin}\left({t}\right)\:=\:{t}−\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} +{t}^{\mathrm{3}} \varepsilon\left({t}\right),\:\:\varepsilon\left({t}\right)\rightarrow\underset{{t}\rightarrow\mathrm{0}} {\mathrm{0}} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{arctan}\left({t}\right)}{{arcsin}\left({t}\right)−{t}}\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}−\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} +{t}^{\mathrm{3}} \varepsilon\left({t}\right)}{{t}−\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} +{t}^{\mathrm{3}} \varepsilon\left({t}\right)−{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:−\frac{{t}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{2}} +{t}^{\mathrm{2}} \varepsilon\left({t}\right)\right)}{{t}\left(\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{2}} +{t}^{\mathrm{2}} \varepsilon\left({t}\right)\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{1} \\ $$$$\therefore\:\underset{{t}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\frac{{arctan}\left({t}\right)}{{arcsin}\left({t}\right)−{t}}\:=\:−\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Commented by cortano1 last updated on 16/Sep/22

No

$$\mathrm{No} \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com