Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 176367 by mr W last updated on 17/Sep/22

Commented by mr W last updated on 17/Sep/22

find the sum of areas of all inscribed  circles in a triangle with side lengthes  a,b,c as shown.

findthesumofareasofallinscribedcirclesinatrianglewithsidelengthesa,b,casshown.

Answered by mr W last updated on 18/Sep/22

Commented by mr W last updated on 19/Sep/22

let Δ=area of the triangle  R=radius of circumcircle  r_0 =radius of incircle  Δ=((bc sin A)/2)=((abc sin A)/(2a))=((abc)/(4R))  r_0 =((2Δ)/(a+b+c))  (r_0 ^2 /Δ)=((4Δ)/((a+b+c)^2 ))=((abc)/(R(a+b+c)^2 ))  (r_0 ^2 /Δ)=((2 sin A sin B sin C)/((sin A+sin B+sin C)^2 ))=tan (A/2) tan (B/2) tan (C/2)    ((r_(n−1) −r_n )/(r_(n−1) +r_n ))=sin (A/2)  (r_n /r_(n−1) )=((1−sin (A/2))/(1+sin (A/2)))  (r_n ^2 /r_(n−1) ^2 )=(((1−sin (A/2))/(1+sin (A/2))))^2 =q_A <1 ⇒G.P.  1−q_A =(1+((1−sin (A/2))/(1+sin (A/2))))(1−((1−sin (A/2))/(1+sin (A/2))))  1−q_A =((4 sin (A/2))/((1+sin (A/2))^2 ))  (1/(1−q_A ))=(((1+sin (A/2))^2 )/(4 sin (A/2)))=(1/4)(sin (A/2)+(1/(sin (A/2))))+(1/2)    A_n =πr_n ^2   Σ_(n=0) ^∞ A_n =πΣ_(n=0) ^∞ r_n ^2 =((πr_0 ^2 )/(1−q_a ))  sum of areas of all inscribed circles:  A_(i.c.) =((πr_0 ^2 )/(1−q_A ))+((πr_0 ^2 )/(1−q_B ))+((πr_0 ^2 )/(1−q_C ))−2πr_0 ^2   A_(i.c.) =((1/(1−q_A ))+(1/(1−q_B ))+(1/(1−q_C ))−2)πr_0 ^2   A_(i.c.) =[(1/4)(sin (A/2)+sin (B/2)+sin (C/2)+(1/(sin (A/2)))+(1/(sin (B/2)))+(1/(sin (C/2))))+(3/2)−2]πr_0 ^2   A_(i.c.) =(sin (A/2)+sin (B/2)+sin (C/2)+(1/(sin (A/2)))+(1/(sin (B/2)))+(1/(sin (C/2)))−2)((πr_0 ^2 )/4)  (A_(i.c.) /Δ)=(sin (A/2)+sin (B/2)+sin (C/2)+(1/(sin (A/2)))+(1/(sin (B/2)))+(1/(sin (C/2)))−2)((πr_0 ^2 )/(4Δ))  (A_(i.c.) /Δ)=(π/4) tan (A/2) tan (B/2) tan (C/2)(sin (A/2)+sin (B/2)+sin (C/2)+(1/(sin (A/2)))+(1/(sin (B/2)))+(1/(sin (C/2)))−2)    examples:  A=40°, B=60°, C=80°: (A_(i.c.) /Δ)≈0.826  A=30°, B=40°, C=110°: (A_(i.c.) /Δ)≈0.812  A=60°, B=60°, C=60°: (A_(i.c.) /Δ)=((11(√3)π)/(72))≈0.831

letΔ=areaofthetriangleR=radiusofcircumcircler0=radiusofincircleΔ=bcsinA2=abcsinA2a=abc4Rr0=2Δa+b+cr02Δ=4Δ(a+b+c)2=abcR(a+b+c)2r02Δ=2sinAsinBsinC(sinA+sinB+sinC)2=tanA2tanB2tanC2rn1rnrn1+rn=sinA2rnrn1=1sinA21+sinA2rn2rn12=(1sinA21+sinA2)2=qA<1G.P.1qA=(1+1sinA21+sinA2)(11sinA21+sinA2)1qA=4sinA2(1+sinA2)211qA=(1+sinA2)24sinA2=14(sinA2+1sinA2)+12An=πrn2n=0An=πn=0rn2=πr021qasumofareasofallinscribedcircles:Ai.c.=πr021qA+πr021qB+πr021qC2πr02Ai.c.=(11qA+11qB+11qC2)πr02Ai.c.=[14(sinA2+sinB2+sinC2+1sinA2+1sinB2+1sinC2)+322]πr02Ai.c.=(sinA2+sinB2+sinC2+1sinA2+1sinB2+1sinC22)πr024Ai.c.Δ=(sinA2+sinB2+sinC2+1sinA2+1sinB2+1sinC22)πr024ΔAi.c.Δ=π4tanA2tanB2tanC2(sinA2+sinB2+sinC2+1sinA2+1sinB2+1sinC22)examples:A=40°,B=60°,C=80°:Ai.c.Δ0.826A=30°,B=40°,C=110°:Ai.c.Δ0.812A=60°,B=60°,C=60°:Ai.c.Δ=113π720.831

Commented by Tawa11 last updated on 18/Sep/22

Wow, great sir.

Wow,greatsir.

Commented by behi834171 last updated on 18/Sep/22

superb!  fantastic!  kudos to you prop: mrW!

superb!fantastic!kudostoyouprop:mrW!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com