Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 176375 by cortano1 last updated on 17/Sep/22

    lim_(x→0^+ )  ((2cos^2 ((1/x))−sin ((1/x))+3)/(x+(√x))) =?

limx0+2cos2(1x)sin(1x)+3x+x=?

Commented by a.lgnaoui last updated on 18/Sep/22

posons  X=(1/x)   x=(1/X)  [((5−sin^2 X−sin X)/( (√X) +1))](√X)   ((5(√X))/( (√X) +1))−(√X)sin X(((sin X +1)/( (√X) +1)))     siut  t=(√X)  ((5t)/(t+1))−tsin (t^2 )(((sin (t^2 )+1)/(t+1)))    ((5t)/(t+1))−(t/(t+1))[sin (t^2 )(sin (t^2 )+1]  x→0+       t→+[∞  lim_(x→0+) =lim_(t→+∞) ((5t)/(t+1))−(t/(t+1))[sin (t^2 )(sin (t^2 )+1]  =5−lim_(X→+∞) [sin(X)(sin (X)+1)]   X=(2k+1)(π/2)     sin X  →1  donc  lim_(x→0+) ((2cos^2 ((1/x))−sin ((1/x)))/(x+(√x)))=5−2=3

posonsX=1xx=1X[5sin2XsinXX+1]X5XX+1XsinX(sinX+1X+1)siutt=X5tt+1tsin(t2)(sin(t2)+1t+1)5tt+1tt+1[sin(t2)(sin(t2)+1]x0+t+[limx0+=limt+5tt+1tt+1[sin(t2)(sin(t2)+1]=5limX+[sin(X)(sin(X)+1)]X=(2k+1)π2sinX1donclimx0+2cos2(1x)sin(1x)x+x=52=3

Commented by peter frank last updated on 19/Sep/22

font size is too large.please minimize

fontsizeistoolarge.pleaseminimize

Terms of Service

Privacy Policy

Contact: info@tinkutara.com