Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176399 by Matica last updated on 18/Sep/22

 a,b,c ∈R_+ ^∗   prove that a+b+c≥3^3 (√(abc))

$$\:{a},{b},{c}\:\in\mathbb{R}_{+} ^{\ast} \:\:{prove}\:{that}\:{a}+{b}+{c}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{{abc}} \\ $$$$ \\ $$

Commented by Matica last updated on 18/Sep/22

Please prove that AM≥GM

$${Please}\:{prove}\:{that}\:{AM}\geqslant{GM} \\ $$

Answered by Frix last updated on 18/Sep/22

for 2 numbers ≥0  ((a+b)/2)≥(√(ab))     both sides ≥0 ⇒ we are allowed to square  (((a+b)^2 )/4)≥ab  (a+b)^2 ≥4ab  a^2 +2ab+b^2 ≥4ab  a^2 −2ab+b^2 ≥0  (a−b)^2 ≥0 true

$$\mathrm{for}\:\mathrm{2}\:\mathrm{numbers}\:\geqslant\mathrm{0} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\:\:\:\:\:\mathrm{both}\:\mathrm{sides}\:\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{square} \\ $$$$\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{4}}\geqslant{ab} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} \geqslant\mathrm{4}{ab} \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} \geqslant\mathrm{4}{ab} \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{ab}+{b}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\left({a}−{b}\right)^{\mathrm{2}} \geqslant\mathrm{0}\:\mathrm{true} \\ $$

Answered by Frix last updated on 18/Sep/22

for 3 numbers ≥0  ((a+b+c)/3)≥((abc))^(1/3)   (((a+b+c)^3 )/(27))≥abc  (a+b+c)^3 ≥27abc  let a≤b∧a≤c∧p, q≥0  b=a+p∧c=a+q  (3a+p+q)^3 ≥27a(a+p)(a+q)  (3a+p+q)^3 −27a(a+p)(a+q)≥0  9ap^2 −9apq+9aq^2 +p^3 +3p^2 q+3pq^2 +q^3 ≥0  9a(p^2 −pq+q^2 )+(p+q)^3 ≥0 true  a≥0∧(p+q)^3 ≥0  p^2 −pq+q^2 =(p−q)^2 +pq≥0

$$\mathrm{for}\:\mathrm{3}\:\mathrm{numbers}\:\geqslant\mathrm{0} \\ $$$$\frac{{a}+{b}+{c}}{\mathrm{3}}\geqslant\sqrt[{\mathrm{3}}]{{abc}} \\ $$$$\frac{\left({a}+{b}+{c}\right)^{\mathrm{3}} }{\mathrm{27}}\geqslant{abc} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{3}} \geqslant\mathrm{27}{abc} \\ $$$$\mathrm{let}\:{a}\leqslant{b}\wedge{a}\leqslant{c}\wedge{p},\:{q}\geqslant\mathrm{0} \\ $$$${b}={a}+{p}\wedge{c}={a}+{q} \\ $$$$\left(\mathrm{3}{a}+{p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{27}{a}\left({a}+{p}\right)\left({a}+{q}\right) \\ $$$$\left(\mathrm{3}{a}+{p}+{q}\right)^{\mathrm{3}} −\mathrm{27}{a}\left({a}+{p}\right)\left({a}+{q}\right)\geqslant\mathrm{0} \\ $$$$\mathrm{9}{ap}^{\mathrm{2}} −\mathrm{9}{apq}+\mathrm{9}{aq}^{\mathrm{2}} +{p}^{\mathrm{3}} +\mathrm{3}{p}^{\mathrm{2}} {q}+\mathrm{3}{pq}^{\mathrm{2}} +{q}^{\mathrm{3}} \geqslant\mathrm{0} \\ $$$$\mathrm{9}{a}\left({p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} \right)+\left({p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{0}\:\mathrm{true} \\ $$$${a}\geqslant\mathrm{0}\wedge\left({p}+{q}\right)^{\mathrm{3}} \geqslant\mathrm{0} \\ $$$${p}^{\mathrm{2}} −{pq}+{q}^{\mathrm{2}} =\left({p}−{q}\right)^{\mathrm{2}} +{pq}\geqslant\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com