Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176485 by Shrinava last updated on 20/Sep/22

Commented by mr W last updated on 20/Sep/22

x=4 is the solution.

x=4isthesolution.

Answered by a.lgnaoui last updated on 20/Sep/22

∫((t^2 +1)/(t^3 +1))dt=∫(t^2 /(t^3 +1))+∫(1/(t^3 +1))dt  =(1/2)∫((2t^2 )/(1+t^3 ))dt+∫(1/((t+1)(t^2 −t+1)))dt  ∫(1/(t+1)(t^2 −t+1)))dt=(1/3)∫((1/(t+1))+((2−t)/(t^2 −t+1)))dt  ∫((2−t)/(t^2 −t+1))dt=∫((−(t−(1/2))+(3/2))/((t−(1/2))^2 +(3/4)))dt  =−(1/2)∫((2t−1)/(t^2 −t+1))+(3/2)×(4/3)∫(dt/([(2/( (√3)))(t−(1/2))]^2 +1))  =−(1/2)log(t^2 −t+1)+2Arctan [((√3)/3)(2t−1)]  finalement  I=(1/2)log(1+t^3 )+(1/3)log(1+t)−(1/2)log(t^2 −t+1)+(1/3)2Arctan [((√3)/3)(2t−1)  ∫_4 ^x ((t^2 +1)/(t^3 +1))dt=(1/2)[((log(1+t^3 )]_4 ^x −log(1−t+t^2 ))]_4 ^x +(1/3)[log(1+t)]_4 ^x +(2/3)Arc[((√3)/3)(2t−1)]_4 ^x   =(1/2)[log(((1+t^3 )/(1−t+t^2 )))]_4 ^x +(1/3)[log(1+t)]_4 ^x +(2/3)Arctan [((√3)/3)(2t−1)]_4^  ^x   =(1/2)[log(1+t)]_4 ^x +(1/3)[log(1+t)]_4 ^x +(2/3)Arctan [((√3)/3)(2t−1)]_4 ^x   (5/6)[log(1+x)−log5)]+(2/3)[Arctan (((√3)/3)2x−((√3)/3))−(2/3)Arctan ((7(√3))/3)  (5/6)log(((1+x)/5))+(2/3)Arctan (((2(√3))/3) x−((√3)/3))−(2/3)Arctan (((7(√3))/3))  I=2((√x) −2)     1+x=1+((√x) )^2    (√x) =X    log[((1+x)/5)]^(5/6) −2(√x) +Arctan ((√3)/3)(2x−1)=4+(2/4)Arctan( ((7(√3))/3))   log(((1+X^2 )/5))^(5/6) −2X+Arctan ((√3)/3)(2X^2 −1)−4−Arctan (((7(√3))/3))=0  ...

t2+1t3+1dt=t2t3+1+1t3+1dt=122t21+t3dt+1(t+1)(t2t+1)dt1t+1)(t2t+1)dt=13(1t+1+2tt2t+1)dt2tt2t+1dt=(t12)+32(t12)2+34dt=122t1t2t+1+32×43dt[23(t12)]2+1=12log(t2t+1)+2Arctan[33(2t1)]finalementI=12log(1+t3)+13log(1+t)12log(t2t+1)+132Arctan[33(2t1)4xt2+1t3+1dt=12[((log(1+t3)]4xlog(1t+t2))]4x+13[log(1+t)]4x+23Arc[33(2t1)]4x=12[log(1+t31t+t2)]4x+13[log(1+t)]4x+23Arctan[33(2t1)]4x=12[log(1+t)]4x+13[log(1+t)]4x+23Arctan[33(2t1)]4x56[log(1+x)log5)]+23[Arctan(332x33)23Arctan73356log(1+x5)+23Arctan(233x33)23Arctan(733)I=2(x2)1+x=1+(x)2x=Xlog[1+x5]562x+Arctan33(2x1)=4+24Arctan(733)log(1+X25)562X+Arctan33(2X21)4Arctan(733)=0...

Commented by Shrinava last updated on 20/Sep/22

thank you dear professor solution please

thankyoudearprofessorsolutionplease

Commented by a.lgnaoui last updated on 20/Sep/22

x=4

x=4

Answered by Peace last updated on 20/Sep/22

F(x)=∫_4 ^x ((t^2 +1)/(t^3 +1))dt−2((√x)−2),DF=R_+   F′(x)=((x^2 +1)/(x^3 +1))−(1/( (√x))),∀x∈R_+ ^∗   g(x)=F^′ (x^2 )=((x^4 +1)/(x^6 +1))−(1/x)=((x^5 +x−x^6 −1)/(x(x^6 +1)))=(((x−1)(x^5 −1))/(x(x^6 +1)))  x_([0,∞[) →^h x^(     2) _([0,∞[)   is Bijection   =(((x−1)(x−1)(x^4 +x^3 +x^2 +1))/(x(x^6 +1)))=(((x−1)^2 (x^4 +x^3 +x^2 +1))/(x(x^6 +1)))≥0  ∀x∈R_+ ^∗   ⇒F(x) Is increasing Function  F(4)=0⇒x=4 is the UniQue solution

F(x)=4xt2+1t3+1dt2(x2),DF=R+F(x)=x2+1x3+11x,xR+g(x)=F(x2)=x4+1x6+11x=x5+xx61x(x6+1)=(x1)(x51)x(x6+1)x[0,[hx[0,[2isBijection=(x1)(x1)(x4+x3+x2+1)x(x6+1)=(x1)2(x4+x3+x2+1)x(x6+1)0xR+F(x)IsincreasingFunctionF(4)=0x=4istheUniQuesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com