Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 176490 by mnjuly1970 last updated on 20/Sep/22

       solve   ( x,y ∈ R )              { (( tan(x ) + tan (y )=2)),(( tan(2x ) + tan( 2y ) = 2)) :}                   −−−−−−−−

solve(x,yR){tan(x)+tan(y)=2tan(2x)+tan(2y)=2

Answered by ajfour last updated on 20/Sep/22

((2tan x)/(1−tan^2 x))+((2tan y)/(1−tan^2 y))=2  ⇒ ((tan x(1−tan^2 y)+tan y(1−tan^2 x))/(1+(tan xtan y)^2 −tan^2 x−tan^2 y))=1  ⇒ ((2−2tan xtan y)/(1−4+2tan xtan y+(tan xtan y)^2 ))=1  call tan x=p,   tan y=q   , & pq=m  we then have p+q=2   &  2−2m=1+2m+m^2   ⇒  m^2 +4m+4=5  m=±(√5)−2  p,q =1±(√(1+2∓(√5)))  choosing − sign  p,q=1±(√(3−(√5)))  while if we choose + sign  p,q=1±(√(3+(√5)))  And when  p=tan x  x=tan^(−1) p+mπ    ∀ m∈Z

2tanx1tan2x+2tany1tan2y=2tanx(1tan2y)+tany(1tan2x)1+(tanxtany)2tan2xtan2y=122tanxtany14+2tanxtany+(tanxtany)2=1calltanx=p,tany=q,&pq=mwethenhavep+q=2&22m=1+2m+m2m2+4m+4=5m=±52p,q=1±1+25choosingsignp,q=1±35whileifwechoose+signp,q=1±3+5Andwhenp=tanxx=tan1p+mπmZ

Commented by Tawa11 last updated on 20/Sep/22

I have subscribe too.

Ihavesubscribetoo.

Commented by Tawa11 last updated on 20/Sep/22

Great sir

Greatsir

Commented by ajfour last updated on 20/Sep/22

https://youtu.be/GmIVICE0YrQ

Commented by mnjuly1970 last updated on 20/Sep/22

   thanks alot  sir ajfor      your  youtube is very very  excellent...grateful sir...

thanksalotsirajforyouryoutubeisveryveryexcellent...gratefulsir...

Commented by ajfour last updated on 20/Sep/22

thanks for viewing, appreciating!

thanksforviewing,appreciating!

Answered by behi834171 last updated on 20/Sep/22

tgx=m,tgy=n  tg(x+y)=(2/(1−mn))  tg(2x+2y)=(2/(1−((2m)/(1−m^2 )).((2n)/(1−n^2 ))))  tg(2x+2y)=((2×(2/(1−mn)))/(1−(4/((1−mn)^2 ))))=((4(1−mn))/((1−mn)^2 −4))  ⇒((1−m^2 −n^2 +m^2 n^2 )/(1−n^2 −m^2 +m^2 n^2 −4mn))=((2−2mn)/(m^2 n^2 −2mn−3))⇒  m^2 n^2 −2mn−3−m^4 n^2 +2m^3 n+3m^2   −m^2 n^4 +2mn^3 +3n^2 +m^4 n^4 −2m^3 n^3 −3m^2 n^2 =  2−2n^2 −2m^2 +2m^2 n^2 −8mn−2mn+  4mn^3 +4m^3 n−2m^3 n^3 +8mn⇒  −2m^2 n^2 −2mn−3−m^4 n^2 +2m^3 n+3m^2   −m^2 n^4 +2mn^3 +3n^2 +m^4 n^4 −2m^3 n^3 −3m^2 n^2 =  2−2n^2 −2m^2 +2m^2 n^2 −2mn+4mn^3 +  4m^3 n−2m^3 n^3 ⇒  −4m^2 n^2 −5−m^4 n^2 −2m^3 n+5m^2 −m^2 n^4   −2mn^3 +5m^2 +m^4 n^4 =0⇒  m^4 n^4 −2m^3 n−2mn^3 −m^4 n^2 −m^2 n^4   −4m^2 n^2 +5m^2 +5n^2 −5=0  ⇒t^4 −3t(m^2 +n^2 )−t^2 (m^2 +n^2 )−4t^2 +  +5(m^2 +n^2 )−5=0  ⇒t^4 −3t(4−2t)−t^2 (4−2t)−4t^2 +  +5(4−2t)−5=0⇒  t^4 −12t+6t^2 −4t^2 +2t^3 −4t^2 +20−10t−5=0  ⇒t^4 +2t^3 −2t^2 −22t+15=0⇒  t=mn=0.67, t=mn=2.16  ⇒ { ((m+n=2)),((mn=0.67 or 2.16)) :}  ⇒z^2 −2z+[0.67  or 2.16]=0  ⇒z−1=±0.57  ⇒ { ((tgx=1.57 or  0.43)),((tgy=0.43  or  1.57)) :}

tgx=m,tgy=ntg(x+y)=21mntg(2x+2y)=212m1m2.2n1n2tg(2x+2y)=2×21mn14(1mn)2=4(1mn)(1mn)241m2n2+m2n21n2m2+m2n24mn=22mnm2n22mn3m2n22mn3m4n2+2m3n+3m2m2n4+2mn3+3n2+m4n42m3n33m2n2=22n22m2+2m2n28mn2mn+4mn3+4m3n2m3n3+8mn2m2n22mn3m4n2+2m3n+3m2m2n4+2mn3+3n2+m4n42m3n33m2n2=22n22m2+2m2n22mn+4mn3+4m3n2m3n34m2n25m4n22m3n+5m2m2n42mn3+5m2+m4n4=0m4n42m3n2mn3m4n2m2n44m2n2+5m2+5n25=0t43t(m2+n2)t2(m2+n2)4t2++5(m2+n2)5=0t43t(42t)t2(42t)4t2++5(42t)5=0t412t+6t24t2+2t34t2+2010t5=0t4+2t32t222t+15=0t=mn=0.67,t=mn=2.16{m+n=2mn=0.67or2.16z22z+[0.67or2.16]=0z1=±0.57{tgx=1.57or0.43tgy=0.43or1.57

Commented by Tawa11 last updated on 22/Sep/22

Great sir.

Greatsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com