All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 176542 by mnjuly1970 last updated on 20/Sep/22
Ω=∫01x.tanh−1(x)(1+x)2dx=124(π2−6)
Answered by Peace last updated on 20/Sep/22
∫01x(1+x)2tg−(x)dxtanh−(x)=12(ln(1+x)−ln(1−x))x(1+x)2=11+x−1(1+x)22Ω=∫01ln(1+x)1+x−ln(1+x)(1+x)2dx+∫01ln(1−x)(1+x)2dx−∫01ln(1−x)1+xdx=12[ln2(1+x)]01+[ln(1+x)1+x]01−∫011(1+x)2+A+B=ln2(2)2+ln(2)2+12+A+BA=limx→1∫0xln(1−t)(1+t)2dt=limx→1{−ln(1−x)1+x−∫0x11−t2.dt}=limx→1−ln(1−x)1+x−12∫0x11−t+11+tdt=limx→1−ln(1−x)1+x+ln(1−x)2−ln(1+x)2=−ln(2)2−B=∫01ln(1−x)1+xdxx=1−t1+t,=−1+21+t⇒dt=−2dt(1+t)22∫01ln(2t1+t)2(1+t).1(1+t)2dt=∫01ln(2t)−ln(1+t)1+tdt=∫01ln(2)1+t+ln(t)1+t−ln(1+t)1+tdt=ln2(2)−ln2(2)2+∫01ln(t)1+tdt=ln2(2)2+∫01ln(1−(−t)−td(−t)=ln2(2)2−Li2(−1)B=−ln2(2)2+Li2(−1)2Ω=ln2(2)2+ln(2)2+12+A+B=ln2(2)2+ln(2)2+12−ln(2)2−ln2(2)2+Li2(−1)=12+Li2(−1)=12+π212=112(π2−6)Ω=124(π2−6)
Commented by Tawa11 last updated on 22/Sep/22
Greatsir
Commented by Peace last updated on 23/Sep/22
thankYouniceDay
Terms of Service
Privacy Policy
Contact: info@tinkutara.com