Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 176542 by mnjuly1970 last updated on 20/Sep/22

    Ω = ∫_0 ^( 1) (( x.tanh^( −1) (x))/((1+x)^( 2) ))dx= (1/(24)) (π^( 2) −6)

Ω=01x.tanh1(x)(1+x)2dx=124(π26)

Answered by Peace last updated on 20/Sep/22

∫_0 ^1 (x/((1+x)^2 ))tg^− (x)dx  tanh^− (x)=(1/2)(ln(1+x)−ln(1−x))  (x/((1+x)^2 ))=(1/(1+x))−(1/((1+x)^2 ))  2Ω=∫_0 ^1 ((ln(1+x))/(1+x))−((ln(1+x))/((1+x)^2 ))dx+∫_0 ^1 ((ln(1−x))/((1+x)^2 ))dx−∫_0 ^1 ((ln(1−x))/(1+x))dx  =(1/2)[ln^2 (1+x)]_0 ^1 +[((ln(1+x))/(1+x))]_0 ^1 −∫_0 ^1 (1/((1+x)^2 ))+A+B  =((ln^2 (2))/2)+((ln(2))/2)+(1/2)+A+B  A=lim_(x→1) ∫_0 ^x ((ln(1−t))/((1+t)^2 ))dt=lim_(x→1) {−((ln(1−x))/(1+x))−∫_0 ^x (1/(1−t^2 )).dt}  =lim_(x→1) −((ln(1−x))/(1+x))−(1/2)∫_0 ^x (1/(1−t))+(1/(1+t))dt  =lim_(x→1) −((ln(1−x))/(1+x))+((ln(1−x))/2)−((ln(1+x))/2)  =−((ln(2))/2)  −B=∫_0 ^1 ((ln(1−x))/(1+x))dx  x=((1−t)/(1+t)),=−1+(2/(1+t))⇒dt=−((2dt)/((1+t)^2 ))  2∫_0 ^1 ((ln(((2t)/(1+t))))/(2/((1+t)))).(1/((1+t)^2 ))dt=∫_0 ^1 ((ln(2t)−ln(1+t))/(1+t))dt  =∫_0 ^1 ((ln(2))/(1+t))+((ln(t))/(1+t))−((ln(1+t))/(1+t))dt  =ln^2 (2)−((ln^2 (2))/2)+∫_0 ^1 ((ln(t))/(1+t))dt=((ln^2 (2))/2)+∫_0 ^1 ((ln(1−(−t))/(−t))d(−t)  =((ln^2 (2))/2)−Li_2 (−1)  B=−((ln^2 (2))/2)+Li_2 (−1)  2Ω=((ln^2 (2))/2)+((ln(2))/2)+(1/2)+A+B  =((ln^2 (2))/2)+((ln(2))/2)+(1/2)−((ln(2))/2)−((ln^2 (2))/2)+Li_2 (−1)  =(1/2)+Li_2 (−1)=(1/2)+(π^2 /(12))=(1/(12))(π^2 −6)  Ω=(1/(24))(π^2 −6)

01x(1+x)2tg(x)dxtanh(x)=12(ln(1+x)ln(1x))x(1+x)2=11+x1(1+x)22Ω=01ln(1+x)1+xln(1+x)(1+x)2dx+01ln(1x)(1+x)2dx01ln(1x)1+xdx=12[ln2(1+x)]01+[ln(1+x)1+x]01011(1+x)2+A+B=ln2(2)2+ln(2)2+12+A+BA=limx10xln(1t)(1+t)2dt=limx1{ln(1x)1+x0x11t2.dt}=limx1ln(1x)1+x120x11t+11+tdt=limx1ln(1x)1+x+ln(1x)2ln(1+x)2=ln(2)2B=01ln(1x)1+xdxx=1t1+t,=1+21+tdt=2dt(1+t)2201ln(2t1+t)2(1+t).1(1+t)2dt=01ln(2t)ln(1+t)1+tdt=01ln(2)1+t+ln(t)1+tln(1+t)1+tdt=ln2(2)ln2(2)2+01ln(t)1+tdt=ln2(2)2+01ln(1(t)td(t)=ln2(2)2Li2(1)B=ln2(2)2+Li2(1)2Ω=ln2(2)2+ln(2)2+12+A+B=ln2(2)2+ln(2)2+12ln(2)2ln2(2)2+Li2(1)=12+Li2(1)=12+π212=112(π26)Ω=124(π26)

Commented by Tawa11 last updated on 22/Sep/22

Great sir

Greatsir

Commented by Peace last updated on 23/Sep/22

thank You nice Day

thankYouniceDay

Terms of Service

Privacy Policy

Contact: info@tinkutara.com