Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176554 by mnjuly1970 last updated on 21/Sep/22

      x + (1/x)  =ϕ  (Golden ratio)     then           x^( 2000)  +(( 1)/x^( 2000) ) = ?

$$ \\ $$$$\:\:\:\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:\:=\varphi\:\:\left({Golden}\:{ratio}\right) \\ $$$$\:\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:\:{x}^{\:\mathrm{2000}} \:+\frac{\:\mathrm{1}}{{x}^{\:\mathrm{2000}} }\:=\:? \\ $$$$ \\ $$

Answered by Peace last updated on 21/Sep/22

U_n =x^n +(1/x^n );ϕU_n =U_(n+1) +U_(n−1)   U_(n+1) −ϕU_n +U_(n−1) =0∴   X^2 −ϕX+1=0  X=((ϕ−i(√(4−ϕ^2 )))/2),((ϕ+i(√(4−ϕ^2 )))/2),U_0 =2,U_1 =ϕ  U_n =a(((ϕ−i(√(4−ϕ^2 )))/2))^n +b(((ϕ+i(√(4−ϕ^2 )))/2))^n   a+b=2,((a+b)/2)ϕ+((i(√(4−ϕ^2 )))/2)(b−a)=ϕ  b−a=0⇒a=b=1  ((ϕ+i(√(4−ϕ^2 )))/2)=((ϕ/2)+i(√(1−((ϕ/2))^2 )))  =e^(itg^− ((√(((2/ϕ))^2 −1))))   U_n =2Re{e^(intg^− ((√(((2/ϕ))^2 −1)))) }  U_n =2cos(ntg^− (√((4−ϕ^2 )/ϕ^2 )))

$${U}_{{n}} ={x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} };\varphi{U}_{{n}} ={U}_{{n}+\mathrm{1}} +{U}_{{n}−\mathrm{1}} \\ $$$${U}_{{n}+\mathrm{1}} −\varphi{U}_{{n}} +{U}_{{n}−\mathrm{1}} =\mathrm{0}\therefore\:\:\:{X}^{\mathrm{2}} −\varphi{X}+\mathrm{1}=\mathrm{0} \\ $$$${X}=\frac{\varphi−{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}},\frac{\varphi+{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}},{U}_{\mathrm{0}} =\mathrm{2},{U}_{\mathrm{1}} =\varphi \\ $$$${U}_{{n}} ={a}\left(\frac{\varphi−{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}}\right)^{{n}} +{b}\left(\frac{\varphi+{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}}\right)^{{n}} \\ $$$${a}+{b}=\mathrm{2},\frac{{a}+{b}}{\mathrm{2}}\varphi+\frac{{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}}\left({b}−{a}\right)=\varphi \\ $$$${b}−{a}=\mathrm{0}\Rightarrow{a}={b}=\mathrm{1} \\ $$$$\frac{\varphi+{i}\sqrt{\mathrm{4}−\varphi^{\mathrm{2}} }}{\mathrm{2}}=\left(\frac{\varphi}{\mathrm{2}}+{i}\sqrt{\mathrm{1}−\left(\frac{\varphi}{\mathrm{2}}\right)^{\mathrm{2}} }\right) \\ $$$$={e}^{{itg}^{−} \left(\sqrt{\left(\frac{\mathrm{2}}{\varphi}\right)^{\mathrm{2}} −\mathrm{1}}\right)} \\ $$$${U}_{{n}} =\mathrm{2}{Re}\left\{{e}^{{intg}^{−} \left(\sqrt{\left(\frac{\mathrm{2}}{\varphi}\right)^{\mathrm{2}} −\mathrm{1}}\right)} \right\} \\ $$$${U}_{{n}} =\mathrm{2}{cos}\left({ntg}^{−} \sqrt{\frac{\mathrm{4}−\varphi^{\mathrm{2}} }{\varphi^{\mathrm{2}} }}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa11 last updated on 23/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by Peace last updated on 25/Sep/22

Withe pleasur

$${Withe}\:{pleasur} \\ $$

Answered by Frix last updated on 22/Sep/22

x+(1/x)=ϕ  x^2 −ϕx+1=0  [x^5 −1=0       (x+1)(x^4 −x^3 +x^2 −x+1)=0       (x+1)(x^2 −((1−(√5))/2)x+1)(x^2 −((1+(√5))/2)+1)=0]  ⇒  x=cos (π/5) ±i sin (π/5) =e^(±i(π/5))   (e^(±i(π/5)) )^(2000) =e^(±400iπ) =e^(±iπ) =1  ⇒ x^(2000) +(1/x^(2000) )=e^(±iπ) +e^(∓iπ) =1+1=2

$${x}+\frac{\mathrm{1}}{{x}}=\varphi \\ $$$${x}^{\mathrm{2}} −\varphi{x}+\mathrm{1}=\mathrm{0} \\ $$$$\left[{x}^{\mathrm{5}} −\mathrm{1}=\mathrm{0}\right. \\ $$$$\:\:\:\:\:\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left.\:\:\:\:\:\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}+\mathrm{1}\right)=\mathrm{0}\right] \\ $$$$\Rightarrow \\ $$$${x}=\mathrm{cos}\:\frac{\pi}{\mathrm{5}}\:\pm\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\:=\mathrm{e}^{\pm\mathrm{i}\frac{\pi}{\mathrm{5}}} \\ $$$$\left(\mathrm{e}^{\pm\mathrm{i}\frac{\pi}{\mathrm{5}}} \right)^{\mathrm{2000}} =\mathrm{e}^{\pm\mathrm{400i}\pi} =\mathrm{e}^{\pm\mathrm{i}\pi} =\mathrm{1} \\ $$$$\Rightarrow\:{x}^{\mathrm{2000}} +\frac{\mathrm{1}}{{x}^{\mathrm{2000}} }=\mathrm{e}^{\pm\mathrm{i}\pi} +\mathrm{e}^{\mp\mathrm{i}\pi} =\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com