Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176592 by Shrinava last updated on 22/Sep/22

Solve the equation:  2^x  + 3^x  − 4^x  + 6^x  − 9^x  = 1

Solvetheequation:2x+3x4x+6x9x=1

Answered by Frix last updated on 22/Sep/22

obvious solution x=0

obvioussolutionx=0

Answered by a.lgnaoui last updated on 23/Sep/22

posons  a=2^x   b=3^x   a^2 =2^(2x)   b^2 =3^(2x)   ab=2^x 3^x =6^x   (a+b)−(a^2 +b^2 )+ab=1      (a+b)−[(a+b)^2 −2ab]+ab=1  (a+b)−(a+b)^2 +3ab=1     (I)  2^x +3^x −(2^x +3^x )^2 =1−3×6^x   (2^x +3^x )(1−2^x −3^x )=1−3×6^x   (2^x +3^x )(2^(2x) +3^(2x) )=3×6^x −1  (2^x +3^x )[(2^(2x) +3^(2x) +2×6^x )−2×6^x ]=3×6^x −1  (2^x +3^x )^3 −2×6^x (2^x +3^x )=3×6^x −1  3ab=1+(a+b)^2 −(a+b)  3×6^x =1+(2^x +3^x )^2 −(2^x +3^x )  (2^x +3^x )^3 −2(2^x +3^x )((1+(2^x +3^x )^2 −(2^x +3^x ))/3)=(2^x +3^x )^2 −(2^x +3^x )  on pose (2^x +3^x =z)  z^3 −(2/)(([z(1+2z^2 −z])/3)=z^2 −z  z^2 −((2(1+2z^2 −z))/3)=z−1  3z^2 −4z^2 +2z−2=3z−3  z^2 +z+1=0      z=0  2^x =−3^x     (−(2/3))^x =1⇒x=0  Δ=1−4=[(√3) i]^2   z1=((−1±(√3) i)/2)  2^x +3^x =(1/2)+((√3)/2)i  2(2^x +3^x )=1+(√3) i  ....solutions  via    coshx ?

posonsa=2xb=3xa2=22xb2=32xab=2x3x=6x(a+b)(a2+b2)+ab=1(a+b)[(a+b)22ab]+ab=1(a+b)(a+b)2+3ab=1(I)2x+3x(2x+3x)2=13×6x(2x+3x)(12x3x)=13×6x(2x+3x)(22x+32x)=3×6x1(2x+3x)[(22x+32x+2×6x)2×6x]=3×6x1(2x+3x)32×6x(2x+3x)=3×6x13ab=1+(a+b)2(a+b)3×6x=1+(2x+3x)2(2x+3x)(2x+3x)32(2x+3x)1+(2x+3x)2(2x+3x)3=(2x+3x)2(2x+3x)onpose(2x+3x=z)z32[z(1+2z2z]3=z2zz22(1+2z2z)3=z13z24z2+2z2=3z3z2+z+1=0z=02x=3x(23)x=1x=0Δ=14=[3i]2z1=1±3i22x+3x=12+32i2(2x+3x)=1+3i....solutionsviacoshx?

Commented by Shrinava last updated on 23/Sep/22

Thank you dear professor, yes, gracias

Thankyoudearprofessor,yes,gracias

Commented by Frix last updated on 23/Sep/22

(a+b)−(a^2 +b^2 )+ab=1  a=u−v∧b=u+v  2u−(2u^2 +2v^2 )+u^2 −v^2 =1  2u−u^2 −3v^2 =1  v^2 =−(((u−1)^2 )/3)  v=±((u−1)/( (√3)))i  a=u±(((√3)(u−1))/3)i∧b=u∓(((√3)(u−1))/3)i  2^x =u±(((√3)(u−1))/3)i∧3^x =u∓(((√3)(u−1))/3)i  again obviously x=0∧u=1  x=((ln (u±(((√3)(u−1))/3)i) +2n_1 πi)/(ln 2))∧x=((ln (u∓(((√3)(u−1))/3)i) +2n_2 πi)/(ln 3))  I don′t think we can find n_1 , n_2 ∈Z for u≠1  p±qi=(√(p^2 +q^2 ))e^(±i tan^(−1)  (q/p))   ln (p±qi) =((ln (p^2 +q^2 ))/2)+(2nπ±tan^(−1)  (q/p))i  we have  ((ln (p−qi))/(ln 2))=((ln (p+qi))/(ln 3))  we need  ((2n_1 π−tan^(−1)  t)/(ln 2))=((2n_2 π+tan^(−1)  t)/(ln 3))  ⇔  n_2 =((1−((ln 3)/(ln 2)))/(2π))tan^(−1)  t +((ln 3)/(ln 2))n_1  with n_1 , n_2 ∈Z

(a+b)(a2+b2)+ab=1a=uvb=u+v2u(2u2+2v2)+u2v2=12uu23v2=1v2=(u1)23v=±u13ia=u±3(u1)3ib=u3(u1)3i2x=u±3(u1)3i3x=u3(u1)3iagainobviouslyx=0u=1x=ln(u±3(u1)3i)+2n1πiln2x=ln(u3(u1)3i)+2n2πiln3Idontthinkwecanfindn1,n2Zforu1p±qi=p2+q2e±itan1qpln(p±qi)=ln(p2+q2)2+(2nπ±tan1qp)iwehaveln(pqi)ln2=ln(p+qi)ln3weneed2n1πtan1tln2=2n2π+tan1tln3n2=1ln3ln22πtan1t+ln3ln2n1withn1,n2Z

Commented by a.lgnaoui last updated on 23/Sep/22

thank you

thankyou

Commented by Tawa11 last updated on 23/Sep/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com