Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176598 by Rasheed.Sindhi last updated on 22/Sep/22

x^3 +(1/x^3 )=1  (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=?  Q#176387 reposted for a new answer.

x3+1x3=1(x5+1x5)31x5+1x5=?You can't use 'macro parameter character #' in math mode

Answered by Rasheed.Sindhi last updated on 22/Sep/22

 determinant (((x^3 +(1/x^3 )=1)))  (x^3 +(1/x^3 ))^3 =(1)^3   x^9 +(1/x^9 )+3(x^3 +(1/x^3 ))=1  x^9 +(1/x^9 )+3(1)=1  x^9 +(1/x^9 )=1−3=−2   determinant (((x^9 +(1/x^9 )=−2)))  (x^3 +(1/x^3 ))^5 =x^(15) +(1/x^(15) )+5(x^9 +(1/x^9 ))+10(x^3 +(1/x^3 ))  (1)^5 =x^(15) +(1/x^(15) )+5(−2)+10(1)  x^(15) +(1/x^(15) )=1                    determinant (((x^(15) +(1/x^(15) )=1)))  (x^5 +(1/x^5 ))^3 =x^(15) +(1/x^(15) )+3(x^5 +(1/x^5 ))    Let x^5 +(1/x^5 )=u  u^3 =3u+1    (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=((u^3 −1)/u)=((3u+1−1)/u)=3

x3+1x3=1(x3+1x3)3=(1)3x9+1x9+3(x3+1x3)=1x9+1x9+3(1)=1x9+1x9=13=2x9+1x9=2(x3+1x3)5=x15+1x15+5(x9+1x9)+10(x3+1x3)(1)5=x15+1x15+5(2)+10(1)x15+1x15=1x15+1x15=1(x5+1x5)3=x15+1x15+3(x5+1x5)Letx5+1x5=uu3=3u+1(x5+1x5)31x5+1x5=u31u=3u+11u=3

Commented by Tawa11 last updated on 23/Sep/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com