Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 176676 by Rasheed.Sindhi last updated on 24/Sep/22

If  x^3 +(1/x^3 )=1,  prove that  x^5 +(1/x^5 )=−(x^4 +(1/x^4 ))

$$\mathrm{If}\:\:\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{1}, \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{5}} }=−\left(\mathrm{x}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\right) \\ $$

Answered by mr W last updated on 24/Sep/22

x+(1/x)=p  x^2 +(1/x^2 )+2=p^2   x^2 +(1/x^2 )=p^2 −2  (x^2 +(1/x^2 ))(x+(1/x))=(p^2 −2)p  x^3 +(1/x^3 )+x+(1/x)=(p^2 −2)p  1+p=(p^2 −2)p  ⇒p^3 −3p−1=0  (x^2 +(1/x^2 ))^2 =(p^2 −2)^2   x^4 +(1/x^4 )+2=p^4 −4p^2 +4  ⇒x^4 +(1/x^4 )=p^4 −4p^2 +2                   =p(3p+1)−4p^2 +2                   =−p^2 +p+2  (x^3 +(1/x^3 ))(x^2 +(1/x^2 ))=p^2 −2  x^5 +(1/x^5 )+x+(1/x)=p^2 −2  ⇒x^5 +(1/x^5 )=p^2 −p−2=−(x^4 +(1/x^4 )) ✓

$${x}+\frac{\mathrm{1}}{{x}}={p} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{2}={p}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }={p}^{\mathrm{2}} −\mathrm{2} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({x}+\frac{\mathrm{1}}{{x}}\right)=\left({p}^{\mathrm{2}} −\mathrm{2}\right){p} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }+{x}+\frac{\mathrm{1}}{{x}}=\left({p}^{\mathrm{2}} −\mathrm{2}\right){p} \\ $$$$\mathrm{1}+{p}=\left({p}^{\mathrm{2}} −\mathrm{2}\right){p} \\ $$$$\Rightarrow{p}^{\mathrm{3}} −\mathrm{3}{p}−\mathrm{1}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} =\left({p}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\mathrm{2}={p}^{\mathrm{4}} −\mathrm{4}{p}^{\mathrm{2}} +\mathrm{4} \\ $$$$\Rightarrow{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }={p}^{\mathrm{4}} −\mathrm{4}{p}^{\mathrm{2}} +\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={p}\left(\mathrm{3}{p}+\mathrm{1}\right)−\mathrm{4}{p}^{\mathrm{2}} +\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−{p}^{\mathrm{2}} +{p}+\mathrm{2} \\ $$$$\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)={p}^{\mathrm{2}} −\mathrm{2} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }+{x}+\frac{\mathrm{1}}{{x}}={p}^{\mathrm{2}} −\mathrm{2} \\ $$$$\Rightarrow{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }={p}^{\mathrm{2}} −{p}−\mathrm{2}=−\left({x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)\:\checkmark \\ $$

Commented by Rasheed.Sindhi last updated on 25/Sep/22

Successful Approach as always.  ThanX a lot sir!

$$\mathcal{S}{uccessful}\:\mathcal{A}{pproach}\:{as}\:{always}. \\ $$$$\mathcal{T}{han}\mathcal{X}\:{a}\:{lot}\:\boldsymbol{{sir}}! \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 24/Sep/22

p_n =x^n +(1/x^n )  p_1 =e_1   p_2 =e_1 p_1 −2e_2 =e_1 ^2 −2  p_3 =e_1 p_2 −e_2 p_1 =e_1 ^3 −3e_1 =1 ⇒e_1 ^3 =1+3e_1   p_4 =e_1 p_3 −e_2 p_2 =e_1 −e_1 ^2 +2  p_5 =e_1 p_4 −e_2 p_3 =e_1 ^2 −e_1 ^3 +2e_1 −1       =e_1 ^2 −1−3e_1 +2e_1 −1       =−e_1 +e_1 ^2 −2=−p_4  ✓

$${p}_{{n}} ={x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} } \\ $$$${p}_{\mathrm{1}} ={e}_{\mathrm{1}} \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −\mathrm{2}{e}_{\mathrm{2}} ={e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2} \\ $$$${p}_{\mathrm{3}} ={e}_{\mathrm{1}} {p}_{\mathrm{2}} −{e}_{\mathrm{2}} {p}_{\mathrm{1}} ={e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{3}{e}_{\mathrm{1}} =\mathrm{1}\:\Rightarrow{e}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{1}+\mathrm{3}{e}_{\mathrm{1}} \\ $$$${p}_{\mathrm{4}} ={e}_{\mathrm{1}} {p}_{\mathrm{3}} −{e}_{\mathrm{2}} {p}_{\mathrm{2}} ={e}_{\mathrm{1}} −{e}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2} \\ $$$${p}_{\mathrm{5}} ={e}_{\mathrm{1}} {p}_{\mathrm{4}} −{e}_{\mathrm{2}} {p}_{\mathrm{3}} ={e}_{\mathrm{1}} ^{\mathrm{2}} −{e}_{\mathrm{1}} ^{\mathrm{3}} +\mathrm{2}{e}_{\mathrm{1}} −\mathrm{1} \\ $$$$\:\:\:\:\:={e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{1}−\mathrm{3}{e}_{\mathrm{1}} +\mathrm{2}{e}_{\mathrm{1}} −\mathrm{1} \\ $$$$\:\:\:\:\:=−{e}_{\mathrm{1}} +{e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}=−{p}_{\mathrm{4}} \:\checkmark \\ $$

Commented by Rasheed.Sindhi last updated on 25/Sep/22

Successful Approach as always.  ThanX a lot sir!

$$\mathcal{S}{uccessful}\:\mathcal{A}{pproach}\:{as}\:{always}. \\ $$$$\mathcal{T}{han}\mathcal{X}\:{a}\:{lot}\:\boldsymbol{{sir}}! \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 25/Sep/22

AnOther way...  x^6 =x^3 −1  x^(12) =(x^6 )^2 =(x^3 −1)^2 =x^6 −2x^3 +1              =x^3 −1−2x^3 +1=−x^3   x^5 +(1/x^5 )=(x^(12) /x^7 )+(x^7 /x^(12) )=((−x^3 )/x^7 )+(x^7 /(−x^3 ))  =−(x^4 +(1/x^4 ))

$$\mathrm{AnOther}\:\mathrm{way}... \\ $$$${x}^{\mathrm{6}} ={x}^{\mathrm{3}} −\mathrm{1} \\ $$$${x}^{\mathrm{12}} =\left({x}^{\mathrm{6}} \right)^{\mathrm{2}} =\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} ={x}^{\mathrm{6}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{3}} −\mathrm{1}−\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}=−{x}^{\mathrm{3}} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=\frac{{x}^{\mathrm{12}} }{{x}^{\mathrm{7}} }+\frac{{x}^{\mathrm{7}} }{{x}^{\mathrm{12}} }=\frac{−{x}^{\mathrm{3}} }{{x}^{\mathrm{7}} }+\frac{{x}^{\mathrm{7}} }{−{x}^{\mathrm{3}} } \\ $$$$=−\left({x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right) \\ $$

Commented by mr W last updated on 25/Sep/22

very smart!

$${very}\:{smart}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com