All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 176679 by mnjuly1970 last updated on 24/Sep/22
Eeasyintegral....Ξ©=β«ββ«0βeβx2dxβ«0βeβx2dxsin2(t).ln3(t+1+t2)dtβββm.nβββ
Answered by Peace last updated on 24/Sep/22
ln(βt+1+t2)=βln(t+1+t2)Ξ©=0
Answered by mahdipoor last updated on 25/Sep/22
βf(a)=β[sin2(a).ln3(a+a2+1)]=sin2(a).[βln(a+a2+1)]3=sin2(a).ln3(1a+a2+1)=sin2(a).ln3(βa+a2+1[a+a2+1][βa+a2+1])=sin2(βa).ln3(βa+(βa)2+1)=f(βa)βββa,f(ΞΎ).Ξ΄x+f(βΞΎ).Ξ΄x=0ββgetβ«0βeβx2dx=mΞΎi=i.Ξ΄xββ0=limΞ΄xβ0βm/Ξ΄xi=0f(βΞΎi).Ξ΄x+f(ΞΎi).Ξ΄x=limΞ΄xβ0βm/Ξ΄xβm/Ξ΄xf(ΞΎi).Ξ΄x=β«βmmf(x)dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com