Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 176741 by HeferH last updated on 26/Sep/22

    In the following figure, if   ((S_1  +S_2 )/( (√S_3 ))) = (6/( (√π)))   find the area of the circular crown

Inthefollowingfigure,ifS1+S2S3=6πfindtheareaofthecircularcrown

Commented by HeferH last updated on 26/Sep/22

Answered by HeferH last updated on 26/Sep/22

 Area of the crown :  π(R^2  − r^2 )   ((S_1 + S_2 )/( r(√π))) = (6/( (√π)))   S_(1 ) + S_2  = 6r   Let a be the radius of S_2      radius of S_1  =  radius of S_3    a^2  = (R + r)(R − r)   a^(2 ) = R^2 −r^2    Seg_1  + Seg_2  + Triangle = ((R^2 π)/2)   ((πr^2  − 2S_1 )/2) + ((πa^2 −2S_2 )/2) + ((2r∙2a)/2) = ((R^2 π)/2)   πr^2  + πa^2 − 2S_1  −2S_2 + 4ar = πR^2    πr^2 +πa^2  − πR^2  =2(S_1  + S_2 ) −4ar   π(r^2  − R^2  + a^2 )= 2(6r) − 4ar   π(r^2  − R^2  + R^2  − r^2 )= 2(6r) − 4ar   0= 12r − 4ar   4ar= 12r   a= 3   a^2  = 9   Area of the crown :  π(R^2  − r^2 ) = 9π

Areaofthecrown:π(R2r2)S1+S2rπ=6πS1+S2=6rLetabetheradiusofS2radiusofS1=radiusofS3a2=(R+r)(Rr)a2=R2r2Seg1+Seg2+Triangle=R2π2πr22S12+πa22S22+2r2a2=R2π2πr2+πa22S12S2+4ar=πR2πr2+πa2πR2=2(S1+S2)4arπ(r2R2+a2)=2(6r)4arπ(r2R2+R2r2)=2(6r)4ar0=12r4ar4ar=12ra=3a2=9Areaofthecrown:π(R2r2)=9π

Commented by Tawa11 last updated on 03/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com