Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17676 by mondodotto@gmail.com last updated on 09/Jul/17

Answered by alex041103 last updated on 09/Jul/17

First:  ((5cos^3 x + 2sin^3 x)/(2sin^2 xcos^2 x)) = (5/2) ((cosx)/(sin^2 x))+((sinx)/(cos^2 x))  ⇒I= ∫ ((5cos^3 x + 2sin^3 x)/(2sin^2 xcos^2 x))=  =(5/2)∫ ((cosx)/(sin^2 x))dx + ∫ ((sinx)/(cos^2 x))dx  No We substitute for the first integral  u=sinx→du=cosxdx  And for the second  w=cosx→dw=−sinxdx  ⇒I=(5/2)∫u^(−2) du − ∫w^(−2) dw=  =−(5/(2sinx)) + (1/(cosx)) + C  ⇒I=∫((5cos^3 x+2sin^3 x)/(2sin^2 xcos^2 x)) dx = (1/(cosx))−(5/(2sinx))+C

First:5cos3x+2sin3x2sin2xcos2x=52cosxsin2x+sinxcos2xI=5cos3x+2sin3x2sin2xcos2x==52cosxsin2xdx+sinxcos2xdxNoWesubstituteforthefirstintegralu=sinxdu=cosxdxAndforthesecondw=cosxdw=sinxdxI=52u2duw2dw==52sinx+1cosx+CI=5cos3x+2sin3x2sin2xcos2xdx=1cosx52sinx+C

Commented by mondodotto@gmail.com last updated on 09/Jul/17

thanx  really appreciated sir

thanxreallyappreciatedsir

Answered by Arnab Maiti last updated on 11/Jul/17

=∫(5/2)((cosx)/(sin^2 x))dx+∫((sinx)/(cos^2 x))dx  =(5/2)∫cosecx cotx dx+∫tanx secx dx  =−(5/2)cosecx+secx+C

=52cosxsin2xdx+sinxcos2xdx=52cosecxcotxdx+tanxsecxdx=52cosecx+secx+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com