Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 176816 by Ar Brandon last updated on 27/Sep/22

Commented by MJS_new last updated on 27/Sep/22

y=x∧5x+12y=60 ⇒ x=y=((60)/(17))

y=x5x+12y=60x=y=6017

Commented by Ar Brandon last updated on 27/Sep/22

Oh! Thank you Sir MJS

Commented by cortano1 last updated on 27/Sep/22

D(0,5) ,C(5,5) ,B(12,0),A(0,0)   AC: y=x ; BD : 5x+12y=60   Let F(((60)/(17)) ,((60)/(17)))   α=α_1 +α_2 ⇒sin α=sin (α_1 +α_2 )   = sin α_1  cos α_2 +cos α_1  sin α_2    = (1/( (√2))) .((60)/(156)) +(1/( (√2))) .((144)/(156))  = (1/( (√2))) ((204)/(156)) =((17)/(13(√2)))= ((17(√2))/(26))

D(0,5),C(5,5),B(12,0),A(0,0)AC:y=x;BD:5x+12y=60LetF(6017,6017)α=α1+α2sinα=sin(α1+α2)=sinα1cosα2+cosα1sinα2=12.60156+12.144156=12204156=17132=17226

Commented by Ar Brandon last updated on 27/Sep/22

Thanks!  But how to get F(((60)/(17)), ((60)/(17)))?

Thanks!ButhowtogetF(6017,6017)?

Answered by mr W last updated on 27/Sep/22

AC=5(√2)  DB=(√(5^2 +12^2 ))=13  area=((5×(5+12))/2)=((5(√2)×13×sin α)/2)  ⇒sin α=((17)/(13(√2)))=((17(√2))/(26))

AC=52DB=52+122=13area=5×(5+12)2=52×13×sinα2sinα=17132=17226

Answered by HeferH last updated on 27/Sep/22

    ∠ DCA = 45°   tan (∠DBA) = (5/(12))     ∠ DBA = tan^(−1) ((5/(12))) ≈ 22.7°   a + 45° + 22.7° = 180°   a = 112.3°   sin (112.3°)≈ 0.9

DCA=45°tan(DBA)=512DBA=tan1(512)22.7°a+45°+22.7°=180°a=112.3°sin(112.3°)0.9

Commented by Ar Brandon last updated on 27/Sep/22

Thank you ��

Answered by som(math1967) last updated on 27/Sep/22

∠DAC=∠DCA=(π/4)  ∴∠CAB=(π/2)−(π/4)=(π/4)   BD=(√(5^2 +12^2 ))=13  ∴∠ABD=sin^(−1) (5/(13))   a=π−(π/4)−sin^(−1) (5/(13))  sina=sin(((3π)/4) −sin^(−1) (5/(13)))   =sin((3π)/4)cos(sin^(−1) (5/(13)))−cos((3π)/4)sinsin^(−1) (5/(13))  =(1/( (√2)))×((12)/(13)) +(1/( (√2)))×(5/(13)) ★  =((17)/( 13(√2)))=((17(√2))/(26))  ★ cos(sin^(−1) (5/(13)))=cos(cos^(−1) ((12)/(13)))

DAC=DCA=π4CAB=π2π4=π4BD=52+122=13ABD=sin1513a=ππ4sin1513sina=sin(3π4sin1513)=sin3π4cos(sin1513)cos3π4sinsin1513=12×1213+12×513=17132=17226cos(sin1513)=cos(cos11213)

Commented by Ar Brandon last updated on 27/Sep/22

Great! Thanks!

Commented by Tawa11 last updated on 28/Sep/22

Great sirs.

Greatsirs.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com