Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176963 by Ml last updated on 28/Sep/22

Commented by Frix last updated on 29/Sep/22

Ω=∫_0 ^(2π) ((ε^2 sin^2  θ)/((1−εcos θ)^2 ))dθ=2∫_0 ^π ((ε^2 sin^2  θ)/((1−εcos θ)^2 ))dθ  Ω is defined for −1<ε<1  I get  Ω=2π((1/( (√(1−ε^2 ))))−1)

$$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\epsilon^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\epsilon\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{d}\theta=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{\epsilon^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\epsilon\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{d}\theta \\ $$$$\Omega\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:−\mathrm{1}<\epsilon<\mathrm{1} \\ $$$$\mathrm{I}\:\mathrm{get} \\ $$$$\Omega=\mathrm{2}\pi\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\epsilon^{\mathrm{2}} }}−\mathrm{1}\right) \\ $$

Answered by Ar Brandon last updated on 28/Sep/22

I=∫_0 ^(2π) ((ξ^2 sin^2 ϑ)/((1−ξcosϑ)^2 ))dϑ    =∫_0 ^(2π) ((ξsinϑ)/((1−ξcosϑ)^2 ))∙ξsinϑdϑ    =[−((ξsinϑ)/(1−ξcosϑ))]_0 ^(2π) +∫_0 ^(2π) ((ξcosϑ)/(1−ξcosϑ))dϑ    =∫_0 ^(2π) ((1/(1−ξcosϑ))−1)dϑ=∫_0 ^(2π) (1/(1−ξcosϑ))−2π  J=∫(1/(1−ξcosϑ))dϑ=∫(1/(1−ξ(((1−t^2 )/(1+t^2 )))))∙(2/(1+t^2 ))dt, t=tan(ϑ/2)     =∫(2/(1+t^2 −ξ(1+t^2 )))dt=∫(2/((1−ξ)t^2 +(1−ξ)))dt     =(2/(1−ξ))∫(1/(t^2 +1))dt=(2/(1−ξ))(arctan(t))+C     =(2/(1−ξ))(arctan(tan((ϑ/2))))+C

$${I}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\xi^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \vartheta}{\left(\mathrm{1}−\xi\mathrm{cos}\vartheta\right)^{\mathrm{2}} }{d}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\xi\mathrm{sin}\vartheta}{\left(\mathrm{1}−\xi\mathrm{cos}\vartheta\right)^{\mathrm{2}} }\centerdot\xi\mathrm{sin}\vartheta{d}\vartheta \\ $$$$\:\:=\left[−\frac{\xi\mathrm{sin}\vartheta}{\mathrm{1}−\xi\mathrm{cos}\vartheta}\right]_{\mathrm{0}} ^{\mathrm{2}\pi} +\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\xi\mathrm{cos}\vartheta}{\mathrm{1}−\xi\mathrm{cos}\vartheta}{d}\vartheta \\ $$$$\:\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\frac{\mathrm{1}}{\mathrm{1}−\xi\mathrm{cos}\vartheta}−\mathrm{1}\right){d}\vartheta=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{\mathrm{1}−\xi\mathrm{cos}\vartheta}−\mathrm{2}\pi \\ $$$${J}=\int\frac{\mathrm{1}}{\mathrm{1}−\xi\mathrm{cos}\vartheta}{d}\vartheta=\int\frac{\mathrm{1}}{\mathrm{1}−\xi\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)}\centerdot\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt},\:{t}=\mathrm{tan}\frac{\vartheta}{\mathrm{2}} \\ $$$$\:\:\:=\int\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} −\xi\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}=\int\frac{\mathrm{2}}{\left(\mathrm{1}−\xi\right){t}^{\mathrm{2}} +\left(\mathrm{1}−\xi\right)}{dt} \\ $$$$\:\:\:=\frac{\mathrm{2}}{\mathrm{1}−\xi}\int\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\frac{\mathrm{2}}{\mathrm{1}−\xi}\left(\mathrm{arctan}\left({t}\right)\right)+{C} \\ $$$$\:\:\:=\frac{\mathrm{2}}{\mathrm{1}−\xi}\left(\mathrm{arctan}\left(\mathrm{tan}\left(\frac{\vartheta}{\mathrm{2}}\right)\right)\right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com