Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176963 by Ml last updated on 28/Sep/22

Commented by Frix last updated on 29/Sep/22

Ω=∫_0 ^(2π) ((ε^2 sin^2  θ)/((1−εcos θ)^2 ))dθ=2∫_0 ^π ((ε^2 sin^2  θ)/((1−εcos θ)^2 ))dθ  Ω is defined for −1<ε<1  I get  Ω=2π((1/( (√(1−ε^2 ))))−1)

Ω=2π0ϵ2sin2θ(1ϵcosθ)2dθ=2π0ϵ2sin2θ(1ϵcosθ)2dθΩisdefinedfor1<ϵ<1IgetΩ=2π(11ϵ21)

Answered by Ar Brandon last updated on 28/Sep/22

I=∫_0 ^(2π) ((ξ^2 sin^2 ϑ)/((1−ξcosϑ)^2 ))dϑ    =∫_0 ^(2π) ((ξsinϑ)/((1−ξcosϑ)^2 ))∙ξsinϑdϑ    =[−((ξsinϑ)/(1−ξcosϑ))]_0 ^(2π) +∫_0 ^(2π) ((ξcosϑ)/(1−ξcosϑ))dϑ    =∫_0 ^(2π) ((1/(1−ξcosϑ))−1)dϑ=∫_0 ^(2π) (1/(1−ξcosϑ))−2π  J=∫(1/(1−ξcosϑ))dϑ=∫(1/(1−ξ(((1−t^2 )/(1+t^2 )))))∙(2/(1+t^2 ))dt, t=tan(ϑ/2)     =∫(2/(1+t^2 −ξ(1+t^2 )))dt=∫(2/((1−ξ)t^2 +(1−ξ)))dt     =(2/(1−ξ))∫(1/(t^2 +1))dt=(2/(1−ξ))(arctan(t))+C     =(2/(1−ξ))(arctan(tan((ϑ/2))))+C

I=02πξ2sin2ϑ(1ξcosϑ)2dϑ=02πξsinϑ(1ξcosϑ)2ξsinϑdϑ=[ξsinϑ1ξcosϑ]02π+02πξcosϑ1ξcosϑdϑ=02π(11ξcosϑ1)dϑ=02π11ξcosϑ2πJ=11ξcosϑdϑ=11ξ(1t21+t2)21+t2dt,t=tanϑ2=21+t2ξ(1+t2)dt=2(1ξ)t2+(1ξ)dt=21ξ1t2+1dt=21ξ(arctan(t))+C=21ξ(arctan(tan(ϑ2)))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com