All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 176963 by Ml last updated on 28/Sep/22
Commented by Frix last updated on 29/Sep/22
Ω=∫2π0ϵ2sin2θ(1−ϵcosθ)2dθ=2∫π0ϵ2sin2θ(1−ϵcosθ)2dθΩisdefinedfor−1<ϵ<1IgetΩ=2π(11−ϵ2−1)
Answered by Ar Brandon last updated on 28/Sep/22
I=∫02πξ2sin2ϑ(1−ξcosϑ)2dϑ=∫02πξsinϑ(1−ξcosϑ)2⋅ξsinϑdϑ=[−ξsinϑ1−ξcosϑ]02π+∫02πξcosϑ1−ξcosϑdϑ=∫02π(11−ξcosϑ−1)dϑ=∫02π11−ξcosϑ−2πJ=∫11−ξcosϑdϑ=∫11−ξ(1−t21+t2)⋅21+t2dt,t=tanϑ2=∫21+t2−ξ(1+t2)dt=∫2(1−ξ)t2+(1−ξ)dt=21−ξ∫1t2+1dt=21−ξ(arctan(t))+C=21−ξ(arctan(tan(ϑ2)))+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com