Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 176991 by mathlove last updated on 29/Sep/22

Answered by som(math1967) last updated on 29/Sep/22

∫(dx/(x^4 +8x^2 +16))  =(1/8)∫((8dx)/(x^4 +8x^2 +16))  =(1/8)∫((8/x^2 )/(x^2 +((4/x))^2 +8))dx  =(1/8)∫(((1+(4/x^2 ))dx)/((x−(4/x))^2 +(4)^2 )) −(1/8)∫(((1−(4/x^2 ))dx)/((x+(4/x))^2 ))  =(1/8)∫((d(x−(4/x)))/((x−(4/x))^2 +4^2 )) −(1/8)∫((d(x+(4/x)))/((x+(4/x))^2 ))  =(1/8)×(1/4)tan^(−1) (((x−(4/x))/4))+(1/8)×(1/((x+(4/x))))+C  =(1/(32))tan^(−1) (((x^2 −4)/(4x)))+(1/8)×(x/((x^2 +4))) +C

dxx4+8x2+16=188dxx4+8x2+16=188x2x2+(4x)2+8dx=18(1+4x2)dx(x4x)2+(4)218(14x2)dx(x+4x)2=18d(x4x)(x4x)2+4218d(x+4x)(x+4x)2=18×14tan1(x4x4)+18×1(x+4x)+C=132tan1(x244x)+18×x(x2+4)+C

Commented by mathlove last updated on 29/Sep/22

thanks

thanks

Commented by peter frank last updated on 29/Sep/22

thank you

thankyou

Answered by Mathspace last updated on 29/Sep/22

I=_(x=2tanθ)   ∫  ((2(1+tan^2 θ)dθ)/(16(1+tan^2 θ)^2 ))  =(1/8)∫  (dθ/(1+tan^2 θ))=(1/8)∫cos^2 θ dθ  =(1/(16))∫(1+cos(2θ))dθ  =(1/(16))θ +(1/(32))sin(2θ) +c  =(1/(16))arctan((x/2))+(1/(32))sin(2arctan((x/2)))+c

I=x=2tanθ2(1+tan2θ)dθ16(1+tan2θ)2=18dθ1+tan2θ=18cos2θdθ=116(1+cos(2θ))dθ=116θ+132sin(2θ)+c=116arctan(x2)+132sin(2arctan(x2))+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com