Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 177031 by HeferH last updated on 29/Sep/22

Answered by mr W last updated on 30/Sep/22

Commented by mr W last updated on 30/Sep/22

cos^(−1) (5/(2R))−cos^(−1) (6/(2R))=30°  (5/(2R))×(6/(2R))+(√((1−((25)/(4R^2 )))(1−((36)/(4R^2 )))))=((√3)/2)  (1−((25)/(4R^2 )))(1−((36)/(4R^2 )))=(((√3)/2)−((30)/(4R^2 )))^2   1−((61)/(4R^2 ))+((25×36)/((4R^2 )^2 ))=(3/4)−((30(√3))/(4R^2 ))+((30^2 )/((4R^2 )^2 ))  ((61−30(√3))/R^2 )=1  ⇒R=(√(61−30(√3)))  CD=(√(R^2 −((5/2))^2 ))=(√(61−30(√3)−((25)/4)))=((√(219−120(√3)))/2)  CB=R−r  DE=(r/(tan 15°))−(5/2)=(2+(√3))r−(5/2)  CD−BE=((√(219−120(√3)))/2)−r  (((√(219−120(√3)))/2)−r)^2 +((2+(√3))r−(5/2))^2 =((√(61−30(√3)))−r)^2   ((219−120(√3))/4)−(√(219−120(√3)))r+(2+(√3))^2 r^2 −5(2+(√3))r+((25)/4)=61−30(√3)−2(√(61−30(√3)))r  (2+(√3))^2 r=(√(219−120(√3)))+5(2+(√3))−2(√(61−30(√3)))  ⇒r=(((√(219−120(√3)))+5(2+(√3))−2(√(61−30(√3))))/((2+(√3))^2 ))         ≈1.147828

cos152Rcos162R=30°52R×62R+(1254R2)(1364R2)=32(1254R2)(1364R2)=(32304R2)21614R2+25×36(4R2)2=343034R2+302(4R2)261303R2=1R=61303CD=R2(52)2=61303254=21912032CB=RrDE=rtan15°52=(2+3)r52CDBE=21912032r(21912032r)2+((2+3)r52)2=(61303r)2219120342191203r+(2+3)2r25(2+3)r+254=61303261303r(2+3)2r=2191203+5(2+3)261303r=2191203+5(2+3)261303(2+3)21.147828

Commented by mr W last updated on 30/Sep/22

an other way to find R:  R=((√(a^2 +b^2 −2ab cos θ))/(2 sin θ))      =((√(5^2 +6^2 −2×5×6×((√3)/2)))/(2×(1/2)))      =(√(61−30(√3)))

anotherwaytofindR:R=a2+b22abcosθ2sinθ=52+622×5×6×322×12=61303

Commented by Tawa11 last updated on 02/Oct/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com