Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 177037 by mr W last updated on 30/Sep/22

Answered by Rasheed.Sindhi last updated on 30/Sep/22

 { ((((x+y+z)/(x(y+z)))=(1/2)⇒x+y+z=((x(y+z))/2))),((((x+y+z)/(y(z+x)))=(1/3)⇒x+y+z=((y(z+x))/3))),((((x+y+z)/(z(x+y)))=(1/4)⇒x+y+z=((z(x+y))/4))) :}    { ((((x(y+z))/2)=((y(z+x))/3)⇒3xy+3zx=2yz+2xy)),((((y(z+x))/3)=((z(x+y))/4)⇒4yz+4xy=3zx+3yz  )),((((z(x+y))/4)=((x(y+z))/2)⇒4xy+4zx=2zx+2yz)) :}    ⇒ { ((3xy+3zx=2yz+2xy)),((4yz+4xy=3zx+3yz)),((4xy+4zx=2zx+2yz)) :}   ⇒ { ((xy−2yz+3zx=0)),((4xy+yz−3zx=0)),((4xy−2yz+2zx=0)) :}   Let     xy=a, yz=b, zx=c  ⇒ { ((a−2b+3c=0...(i))),((4a+b−3c=0...(ii))),((4a−2b+2c=0...(iii))) :}    (i)+(ii): 5a−b=0⇒b=5a  (ii)−(iii):3b−5c=0⇒3(5a)=5c⇒c=3a  5a=b⇒5xy=yz⇒z=5x; y≠0  3a=c⇒3xy=zx⇒z=3y; x≠0  5x=3y⇒y=(5/3)x,z=5x  put these values of y & z in first  given equation to get:  x=((23)/(10)),y=((23)/6),z=((23)/2)

{x+y+zx(y+z)=12x+y+z=x(y+z)2x+y+zy(z+x)=13x+y+z=y(z+x)3x+y+zz(x+y)=14x+y+z=z(x+y)4{x(y+z)2=y(z+x)33xy+3zx=2yz+2xyy(z+x)3=z(x+y)44yz+4xy=3zx+3yzz(x+y)4=x(y+z)24xy+4zx=2zx+2yz{3xy+3zx=2yz+2xy4yz+4xy=3zx+3yz4xy+4zx=2zx+2yz{xy2yz+3zx=04xy+yz3zx=04xy2yz+2zx=0Letxy=a,yz=b,zx=c{a2b+3c=0...(i)4a+b3c=0...(ii)4a2b+2c=0...(iii)(i)+(ii):5ab=0b=5a(ii)(iii):3b5c=03(5a)=5cc=3a5a=b5xy=yzz=5x;y03a=c3xy=zxz=3y;x05x=3yy=53x,z=5xputthesevaluesofy&zinfirstgivenequationtoget:x=2310,y=236,z=232

Commented by mr W last updated on 30/Sep/22

thanks alot sir!

thanksalotsir!

Commented by Rasheed.Sindhi last updated on 30/Sep/22

Sir mr W, what  should we understand   by the following situation?  ⇒ { ((a−2b+3c=0)),((4a+b−3c=0)),((4a−2b+2c=0)) :}    determinant ((1,(−2),(    3)),(4,(     1),(−3)),(4,(−2),(     2)))=0    The matrix of coefficients is singular  Doesn′t this mean that the equation  has no unique solution? But we can  see that above has unique solution!

SirmrW,whatshouldweunderstandbythefollowingsituation?{a2b+3c=04a+b3c=04a2b+2c=0|123413422|=0ThematrixofcoefficientsissingularDoesntthismeanthattheequationhasnouniquesolution?Butwecanseethatabovehasuniquesolution!

Commented by Frix last updated on 30/Sep/22

a, b, c are not independent variables

a,b,carenotindependentvariables

Commented by mr W last updated on 30/Sep/22

 determinant ((1,(−2),(    3)),(4,(     1),(−3)),(4,(−2),(     2)))=0    means only that there is no unique  solution for a,b,c. but this doesn′t  mean that there is also no unique   solution for x,y,z.

|123413422|=0meansonlythatthereisnouniquesolutionfora,b,c.butthisdoesntmeanthatthereisalsonouniquesolutionforx,y,z.

Commented by Rasheed.Sindhi last updated on 30/Sep/22

Thank you sirs!

Thankyousirs!

Commented by Rasheed.Sindhi last updated on 30/Sep/22

Sir,does a=xy=((23^2 )/(60)),b=yz=((23^2 )/(12)),  c=zx=((23^2 )/(20)) is not a unique solution of          { ((a−2b+3c=0...(i))),((4a+b−3c=0...(ii))),((4a−2b+2c=0...(iii))) :}     ?

Sir,doesa=xy=23260,b=yz=23212,c=zx=23220isnotauniquesolutionof{a2b+3c=0...(i)4a+b3c=0...(ii)4a2b+2c=0...(iii)?

Commented by Frix last updated on 30/Sep/22

this solution is not unique for a, b, c but  only if a=xy∧b=yz∧c=zx. if we let  a=3xy∧b=4yz∧c=5zx we get a different  solution (if we get one at all)

thissolutionisnotuniquefora,b,cbutonlyifa=xyb=yzc=zx.ifweleta=3xyb=4yzc=5zxwegetadifferentsolution(ifwegetoneatall)

Commented by Tawa11 last updated on 02/Oct/22

Great sirs

Greatsirs

Answered by mr W last updated on 30/Sep/22

let y=px, z=qx  ((p+q+1)/(p+q))=(x/2)  ((p+q+1)/(p(q+1)))=(x/3)  ((p+q+1)/(q(p+1)))=(x/4)    ((p(q+1))/(p+q))=(3/2) ⇒pq+p=((3(p+q))/2)  ((q(p+1))/(p+q))=(4/2) ⇒pq+q=2(p+q)  ⇒pq=((5(p+q))/4)  p=((3(p+q))/2)−((5(p+q))/4)=((p+q)/4) ⇒3p=q  ((p(3p+1))/(p+3p))=(3/2) ⇒p=(5/3) ⇒q=5  1+(1/((5/3)+5))=(x/2)  ⇒x=((23)/(10))  ⇒y=((23)/(10))×(5/3)=((23)/6)  ⇒z=((23)/(10))×5=((23)/2)

lety=px,z=qxp+q+1p+q=x2p+q+1p(q+1)=x3p+q+1q(p+1)=x4p(q+1)p+q=32pq+p=3(p+q)2q(p+1)p+q=42pq+q=2(p+q)pq=5(p+q)4p=3(p+q)25(p+q)4=p+q43p=qp(3p+1)p+3p=32p=53q=51+153+5=x2x=2310y=2310×53=236z=2310×5=232

Answered by mr W last updated on 30/Sep/22

an other way:  ((x+y+z)/(xy+zx))=(1/2)   ⇒xy+zx=2(x+y+z)   ...(i)  similarly  ⇒yz+xy=3(x+y+z)   ...(ii)  ⇒zx+yz=4(x+y+z)   ...(iii)  [(i)+(ii)+(iii)]/2:  xy+yz+zx=((9(x+y+z))/2)   ...(iv)  (iv)−(i):  yz=((5(x+y+z))/2)=5λ with λ=((x+y+z)/2)  similarly  zx=((3(x+y+z))/2)=3λ  xy=((x+y+z)/2)=λ  (xyz)^2 =15λ^3   ⇒xyz=(√(15λ^3 ))  ⇒x=((√(15λ))/5)  ⇒y=((√(15λ))/3)  ⇒z=((√(15λ))/1)  x+y+z=2λ=((1/5)+(1/3)+1)(√(15λ))  ⇒(√(15λ))=((23)/2)  ⇒x=((23)/(2×5))=((23)/(10))  ⇒y=((23)/(2×3))=((23)/6)  ⇒z=((23)/2)

anotherway:x+y+zxy+zx=12xy+zx=2(x+y+z)...(i)similarlyyz+xy=3(x+y+z)...(ii)zx+yz=4(x+y+z)...(iii)[(i)+(ii)+(iii)]/2:xy+yz+zx=9(x+y+z)2...(iv)(iv)(i):yz=5(x+y+z)2=5λwithλ=x+y+z2similarlyzx=3(x+y+z)2=3λxy=x+y+z2=λ(xyz)2=15λ3xyz=15λ3x=15λ5y=15λ3z=15λ1x+y+z=2λ=(15+13+1)15λ15λ=232x=232×5=2310y=232×3=236z=232

Terms of Service

Privacy Policy

Contact: info@tinkutara.com