Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 17704 by Tinkutara last updated on 09/Jul/17

A monkey climbs up a slippery pole for  3 seconds and subsequently slips for 3  seconds. Its velocity at time t is given  by v (t) = 2t(3 − t) ; 0 < t < 3 and  v (t) = − (t − 3)(6 − t) for 3 < t < 6 s  in m/s. It repeats this cycle till it  reaches the height of 20 m. At what  time is its average velocity maximum?

$$\mathrm{A}\:\mathrm{monkey}\:\mathrm{climbs}\:\mathrm{up}\:\mathrm{a}\:\mathrm{slippery}\:\mathrm{pole}\:\mathrm{for} \\ $$ $$\mathrm{3}\:\mathrm{seconds}\:\mathrm{and}\:\mathrm{subsequently}\:\mathrm{slips}\:\mathrm{for}\:\mathrm{3} \\ $$ $$\mathrm{seconds}.\:\mathrm{Its}\:\mathrm{velocity}\:\mathrm{at}\:\mathrm{time}\:{t}\:\mathrm{is}\:\mathrm{given} \\ $$ $$\mathrm{by}\:{v}\:\left({t}\right)\:=\:\mathrm{2}{t}\left(\mathrm{3}\:−\:{t}\right)\:;\:\mathrm{0}\:<\:{t}\:<\:\mathrm{3}\:\mathrm{and} \\ $$ $${v}\:\left({t}\right)\:=\:−\:\left({t}\:−\:\mathrm{3}\right)\left(\mathrm{6}\:−\:{t}\right)\:\mathrm{for}\:\mathrm{3}\:<\:{t}\:<\:\mathrm{6}\:\mathrm{s} \\ $$ $$\mathrm{in}\:\mathrm{m}/\mathrm{s}.\:\mathrm{It}\:\mathrm{repeats}\:\mathrm{this}\:\mathrm{cycle}\:\mathrm{till}\:\mathrm{it} \\ $$ $$\mathrm{reaches}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{At}\:\mathrm{what} \\ $$ $$\mathrm{time}\:\mathrm{is}\:\mathrm{its}\:\mathrm{average}\:\mathrm{velocity}\:\mathrm{maximum}? \\ $$

Commented byajfour last updated on 09/Jul/17

at t=(9/4) s .

$$\mathrm{at}\:\boldsymbol{\mathrm{t}}=\frac{\mathrm{9}}{\mathrm{4}}\:\mathrm{s}\:. \\ $$

Answered by ajfour last updated on 09/Jul/17

Commented byajfour last updated on 09/Jul/17

 v_(avg) =(s/t)  for the climb between t=0  and  t=3s  v=2t(3−t)=6t−2t^2   s=3t^2 −((2t^3 )/3)  ⇒   (s/t)=3t−((2t^2 )/3)  (v_(avg) )_(max) = max. slope of tangent    (from origin)  to s-t graph.  ⇒ at such point (ds/dt) =(s/t)           6t−2t^2 =3t−((2t^2 )/3)      or   ((4t^2 )/3)=3t    ⇒    t=0, (9/4) s .  as at t=0,  v_(avg) =0  but at t=9/4  , v_(avg)  is a maximum.

$$\:\mathrm{v}_{\mathrm{avg}} =\frac{\mathrm{s}}{\mathrm{t}} \\ $$ $$\mathrm{for}\:\mathrm{the}\:\mathrm{climb}\:\mathrm{between}\:\mathrm{t}=\mathrm{0}\:\:\mathrm{and} \\ $$ $$\mathrm{t}=\mathrm{3s} \\ $$ $$\mathrm{v}=\mathrm{2t}\left(\mathrm{3}−\mathrm{t}\right)=\mathrm{6t}−\mathrm{2t}^{\mathrm{2}} \\ $$ $$\mathrm{s}=\mathrm{3t}^{\mathrm{2}} −\frac{\mathrm{2t}^{\mathrm{3}} }{\mathrm{3}}\:\:\Rightarrow\:\:\:\frac{\mathrm{s}}{\mathrm{t}}=\mathrm{3t}−\frac{\mathrm{2t}^{\mathrm{2}} }{\mathrm{3}} \\ $$ $$\left(\mathrm{v}_{\mathrm{avg}} \right)_{\mathrm{max}} =\:\mathrm{max}.\:\mathrm{slope}\:\mathrm{of}\:\mathrm{tangent}\: \\ $$ $$\:\left(\mathrm{from}\:\mathrm{origin}\right)\:\:\mathrm{to}\:\mathrm{s}-\mathrm{t}\:\mathrm{graph}. \\ $$ $$\Rightarrow\:\mathrm{at}\:\mathrm{such}\:\mathrm{point}\:\frac{\mathrm{ds}}{\mathrm{dt}}\:=\frac{\mathrm{s}}{\mathrm{t}} \\ $$ $$\:\:\:\:\:\:\:\:\:\mathrm{6t}−\mathrm{2t}^{\mathrm{2}} =\mathrm{3t}−\frac{\mathrm{2t}^{\mathrm{2}} }{\mathrm{3}} \\ $$ $$\:\:\:\:\mathrm{or}\:\:\:\frac{\mathrm{4t}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{3t}\:\: \\ $$ $$\Rightarrow\:\:\:\:\mathrm{t}=\mathrm{0},\:\frac{\mathrm{9}}{\mathrm{4}}\:\mathrm{s}\:. \\ $$ $$\mathrm{as}\:\mathrm{at}\:\mathrm{t}=\mathrm{0},\:\:\mathrm{v}_{\mathrm{avg}} =\mathrm{0} \\ $$ $$\mathrm{but}\:\mathrm{at}\:\mathrm{t}=\mathrm{9}/\mathrm{4}\:\:,\:\mathrm{v}_{\mathrm{avg}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{maximum}. \\ $$

Commented byTinkutara last updated on 09/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by alex041103 last updated on 09/Jul/17

First v_(av) (t) is the average velocity from  0 to t and  v_(av) (t) = (1/t) ∫_(  0) ^t  v(t)dt  then  (d/dt)v_(av) (t) = (1/t)v(t) − (1/t^2 )∫_0 ^t v(t) dt  For v(t)=2t(3−t)  (d/dt)v_(av) (t)=3−(4/3)t  We search for (d/dt)v_(av) (t)=0  ⇒t=9/4∈(6k,6k+3) for ∃(k+1)∈N→ ok  For v(t)=(t−3)(t−6)  (d/dt)v_(av) (t)=(2/3)t−(9/2)  We search for (d/dt)v_(av) (t)=0  ⇒t=6.75∉(6k+3,6k+6) for ∃(k+1)∈N →not ok    The extremum is t=9/4<3  For t=3 →(d/dt)v_(av) (3)<0  ⇒ max(v_(av) )=v_(av) (9/4)

$$\mathrm{First}\:{v}_{{av}} \left({t}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{average}\:\mathrm{velocity}\:\mathrm{from} \\ $$ $$\mathrm{0}\:\mathrm{to}\:\mathrm{t}\:\mathrm{and} \\ $$ $${v}_{{av}} \left({t}\right)\:=\:\frac{\mathrm{1}}{{t}}\:\underset{\:\:\mathrm{0}} {\overset{\mathrm{t}} {\int}}\:{v}\left({t}\right){dt} \\ $$ $${then} \\ $$ $$\frac{{d}}{{dt}}{v}_{{av}} \left({t}\right)\:=\:\frac{\mathrm{1}}{{t}}{v}\left({t}\right)\:−\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\underset{\mathrm{0}} {\overset{\mathrm{t}} {\int}}{v}\left({t}\right)\:{dt} \\ $$ $$\mathrm{For}\:{v}\left({t}\right)=\mathrm{2}{t}\left(\mathrm{3}−{t}\right) \\ $$ $$\frac{{d}}{{dt}}{v}_{{av}} \left({t}\right)=\mathrm{3}−\frac{\mathrm{4}}{\mathrm{3}}{t} \\ $$ $$\mathrm{We}\:\mathrm{search}\:\mathrm{for}\:\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{v}_{\mathrm{av}} \left(\mathrm{t}\right)=\mathrm{0} \\ $$ $$\Rightarrow\mathrm{t}=\mathrm{9}/\mathrm{4}\in\left(\mathrm{6k},\mathrm{6k}+\mathrm{3}\right)\:\mathrm{for}\:\exists\left(\mathrm{k}+\mathrm{1}\right)\in\mathbb{N}\rightarrow\:\mathrm{ok} \\ $$ $$\mathrm{For}\:{v}\left({t}\right)=\left(\mathrm{t}−\mathrm{3}\right)\left(\mathrm{t}−\mathrm{6}\right) \\ $$ $$\frac{{d}}{{dt}}{v}_{{av}} \left({t}\right)=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{t}−\frac{\mathrm{9}}{\mathrm{2}} \\ $$ $$\mathrm{We}\:\mathrm{search}\:\mathrm{for}\:\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{v}_{\mathrm{av}} \left(\mathrm{t}\right)=\mathrm{0} \\ $$ $$\Rightarrow\mathrm{t}=\mathrm{6}.\mathrm{75}\notin\left(\mathrm{6k}+\mathrm{3},\mathrm{6k}+\mathrm{6}\right)\:\mathrm{for}\:\exists\left(\mathrm{k}+\mathrm{1}\right)\in\mathbb{N}\:\rightarrow\mathrm{not}\:\mathrm{ok} \\ $$ $$ \\ $$ $$\mathrm{The}\:\mathrm{extremum}\:\mathrm{is}\:\mathrm{t}=\mathrm{9}/\mathrm{4}<\mathrm{3} \\ $$ $$\mathrm{For}\:\mathrm{t}=\mathrm{3}\:\rightarrow\frac{\mathrm{d}}{\mathrm{dt}}\mathrm{v}_{\mathrm{av}} \left(\mathrm{3}\right)<\mathrm{0} \\ $$ $$\Rightarrow\:\mathrm{max}\left(\mathrm{v}_{\mathrm{av}} \right)=\mathrm{v}_{\mathrm{av}} \left(\mathrm{9}/\mathrm{4}\right) \\ $$

Commented byTinkutara last updated on 09/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com